With the rapid growth in connected vehicles, FoG-assisted vehicular ad hoc network (VANET) is an emerging and novel field of research. For information sharing, a number of messages are exchanged in various applications, including traffic monitoring and area-specific live weather and social aspects monitoring. It is quite challenging where vehicles' speed, direction, and density of neighbors on the move are not consistent. In this scenario, congestion avoidance is also quite challenging to avoid communication loss during busy hours or in emergency cases. This paper presents emergency message dissemination schemes that are based on congestion avoidance scenario in VANET and vehicular FoG computing. In the similar vein, FoG-assisted VANET architecture is explored that can efficiently manage the message congestion scenarios. We present a taxonomy of schemes that address message congestion avoidance. Next, we have included a discussion about comparison of congestion avoidance schemes to highlight the strengths and weaknesses. We have also identified that FoG servers help to reduce the accessibility delays and congestion as compared to directly approaching cloud for all requests in linkage with big data repositories. For the dependable applicability of FoG in VANET, we have identified a number of open research challenges.
Physical activity is essential for physical and mental health, and its absence is highly associated with severe health conditions and disorders. Therefore, tracking activities of daily living can help promote quality of life. Wearable sensors in this regard can provide a reliable and economical means of tracking such activities, and such sensors are readily available in smartphones and watches. This study is the first of its kind to develop a wearable sensor-based physical activity classification system using a special class of supervised machine learning approaches called boosting algorithms. The study presents the performance analysis of several boosting algorithms (extreme gradient boosting—XGB, light gradient boosting machine—LGBM, gradient boosting—GB, cat boosting—CB and AdaBoost) in a fair and unbiased performance way using uniform dataset, feature set, feature selection method, performance metric and cross-validation techniques. The study utilizes the Smartphone-based dataset of thirty individuals. The results showed that the proposed method could accurately classify the activities of daily living with very high performance (above 90%). These findings suggest the strength of the proposed system in classifying activity of daily living using only the smartphone sensor’s data and can assist in reducing the physical inactivity patterns to promote a healthier lifestyle and wellbeing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.