Although aqueous synthesis of nanocrystals is advantageous in terms of the cost, convenience, environmental friendliness, and surface cleanness of the product, nanocrystals of Pt and non-noble metal alloys are difficult to obtain with controlled morphology and composition from this synthesis owing to a huge gap between the reduction potentials of respective metal salts. This huge gap could now be remedied by introducing a sulfite into the aqueous synthesis, which is believed to resemble an electroless plating mechanism, giving rise to a colloid of Pt-M (M=Ni, Co, Fe) alloy nanowires with an ultrasmall thickness (ca. 2.6 nm) in a high yield. The sulfite also leads to the formation of surface M-S bonds and thus atomic-level Pt/M-S(OH) interfaces for greatly boosted hydrogen evolution kinetics under alkaline conditions. An activity of 75.3 mA cm has been achieved with 3 μg of Pt in 1 m KOH at an overpotential of 70 mV, which is superior to previously reported catalysts.
BackgroundD-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis.ResultsWe developed a genetically modified strain of B. licheniformis (WX-02 ΔbudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h.ConclusionsWe confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3-butanediol with high optimal purity.
Although
strain engineering is effective in boosting the activities
of noble metal catalysts, it remains desirable to construct fully
strained catalysts to push the activity to even higher levels. Herein,
we report a novel route to strong lattice strains of a Pd-based catalyst
by radial growth of a Pd-rich phase on Au–Ag alloy nanowires
that are no thicker than 1.5 nm. It creates not only tensile strains
in the Pd-rich sheath due to the core–sheath lattice mismatch
but also distortion and twinning of the lattice, producing nonhomogeneous
local strains as hotspots for the catalysis. Toward the electrochemical
oxidation of biomass-derived alcohols including ethanol, ethylene
glycol, and glycerol, the highly strained nanowires outperformed their
less strained counterparts and reached up to 13.6, 18.2, and 11.1
A mgPd
–1, respectively. This strain engineering
strategy may open new avenues to highly efficient catalysts for direct
alcohol fuel cells and many other applications.
Malignant pleural effusion cell block samples had a diagnostic performance for ALK detection in advanced NSCLC that was comparable to that of tumour tissue samples. MPE cell block samples might be valid alternative samples for ALK detection when tissue is not available. Ventana IHC could be the most suitable method for ALK detection in MPE cell block samples.
It is highly desirable for the synthesis and stabilization of noble metal nanoparticles of uniform, precisely tunable sizes, especially in the range of angstroms to a few nanometers, for many catalytic applications in pursuit of optimal activity and selectivity. Herein, we report a novel strategy for the synthesis of uniform platinum (Pt) nanoparticles of ultrasmall sizes (average size: 0.9-2.3 nm), which are stabilized on hollow polymer nanoshells formed by polymerization of sodium dodecyl benzenesulfonate (SDBS) at the interface of an ethanol/water emulsion. The resulting composite represents a highly active catalyst for effective oxidation of alcohols under ambient conditions. Strong size-dependent catalytic activity of Pt nanoparticles has been revealed in aerobic oxidation of 1-phenylethanol to yield acetophenone, demonstrating a volcano-shape profile, with Pt nanoparticles of ∼1.7 nm showing the highest activity. The size effect has been attributed to the size-dependent d-band electron structure of the Pt nanoparticles. This work reveals the size effect of Pt nanoparticles in general organic oxidation reactions, and thus provides a general methodology and a lot of opportunities in the design of metal-nanoparticle-based catalysts for fine-chemical production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.