In this work, we fabricated unique fluffy Co/CoO micro-rod composites with various weight ratios between Co and CoO.
It is well known that reverse flotation performance of iron oxides is affected by water quality. Since many potential variations among water sources recycling in a mineral processing plant bring unpredictable effects on the flotation system of iron oxides: disturbing ions/compounds, pH, hardness, residual reagents, etc. In this study, the recycled tailing water from a local plant, characteristically constituting of Ca2+, Mg2+, Na+, K+, Al3+, Fe3+, Cl−, SO42− etc., was introduced into the cationic reverse flotation process of an iron ore. A series of bench flotation tests using iron ores, micro-flotation tests using pure fine quartz, water chemical analyses, and zeta potential measurement were conducted with the objective of identifying the possible influences of both cations and anions in the recycled tailing water on the flotation performance. The flotation results pointed out that the cation with higher valency had more severe influences on the recovery of iron oxides. The formation of the pH-dependent surface complexes on mineral surfaces, for example, Fe(OH)+, Fe(OH)2+, and Fe(OH)3 resulted from Fe3+ ions adsorption, contributed to the less negative zeta potentials of the quartz, and consequently weakened its interaction with the amine collector. It is worthy to note that SO42− ions seem to have a more positive effect on the recovery of iron oxides than Cl− ions. This is probably attributed to the formation of inner/outer- sphere surface complexes on the iron oxides, inhibiting the dissolution of the iron ions/species, and the coordination with these cations from the recycled tailing water, shielding their disturbances in the flotation.
The surface states of pyrite (FeS 2 ) were theoretically investigated using first principle calculation based on the density functional theory (DFT). The results indicate that both the (200) and (311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy (AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.
For industrial flotation foam image processing, accurate bubble size measurement and feature extraction are very important to optimize the flotation process and to improve the recovery of mineral resources. This paper presents an improved algorithm to investigate mineral flotation foam image segmentation for mineral processing. Several libraries implemented for the Python programming language are used for image enhancement and compensation, quantitative analysis of factors influencing the image segmentation accuracy, and suggestions for improvement of the flotation foam image processing. The bubble characteristics-size and morphology-and the influence of the flotation conditions on the flotation foam image are analyzed. A Python implementation of the Retinex image compensation method-region-adaptive and multiscale-is proposed to address known issues of uneven illumination and shadows affecting flotation foam images, thereby improving brightness uniformity. Finally, an improved version of the watershed segmentation algorithm included in the Python Open Source Computer Vision library is used for segmentation analysis. The accuracy of the flotation foam image segmentation is 3.3% higher than for the standard watershed algorithm and the segmentation time is 9.9% shorter.
In this study, the dissolution kinetics of smithsonite as an alternative zinc source in trichloroacetic acid (TCA) solution was investigated. TCA can be derived from industrial waste acid in the pharmaceutical, biotechnology and chemical fields. Results showed that the dissolution kinetics conformed to the shrinking core model controlled by surface chemical reaction. The apparent activation energy of the reaction was calculated as 47.61 kJ/mol, indicating the obvious effect of temperature on the reaction rate. The reaction kinetic equation associated with the main influencing factors was eventually established as 1-(1-x) -1/3 = [0.0002 (C) 0.384 (P) 0.969 exp(-5726T)] t. The high reaction speed of smithsonite in TCA solution shows that TCA has a dissolution effect on zinc oxide ores; thus, it can be employed as an advantageous organic leaching reagent environmentally friendly. In addition, the experimental parameters obtained provide basic data and reference for the leaching of other carbonate minerals of copper, zinc, lead and cobalt, among others, in an organic acid system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.