Quasi-Newton methods are widely used for solving unconstrained optimization problems. However, it is difficult to apply quasi-Newton methods directly to large-scale unconstrained optimization problems, because they need the storage of memories for matrices. In order to overcome this difficulty, memoryless quasi-Newton methods were proposed. Shanno (1978) derived the memoryless BFGS method. Recently, several researchers studied the memoryless quasi-Newton method based on the symmetric rank-one formula. However existing memoryless symmetric rank-one methods do not necessarily satisfy the sufficient descent condition. In this paper, we focus on the symmetric rank-one formula based on the spectral scaling secant condition and derive a memoryless quasi-Newton method based on the formula. Moreover we show that the method always satisfies the sufficient descent condition and converges globally for general objective functions. Finally, preliminary numerical results are shown.
Memoryless quasi-Newton methods are studied for solving largescale unconstrained optimization problems. Recently, memoryless quasi-Newton methods based on several kinds of updating formulas were proposed. Since the methods closely related to the conjugate gradient method, the methods are promising. In this paper, we propose a memoryless quasi-Newton method based on the Broyden family with the spectral-scaling secant condition. We focus on the convex and preconvex classes of the Broyden family, and we show that the proposed method satisfies the sufficient descent condition and converges globally. Finally, some numerical experiments are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.