In addition to thymus-derived or natural T regulatory (nTreg) cells, a second subset of induced T regulatory (iTreg) cells arises de novo from conventional CD4+ T cells in the periphery. The function of iTreg cells in tolerance was examined in a CD45RBhighCD4+ T cell transfer model of colitis. In situ-generated iTreg cells were similar to nTreg cells in their capacity to suppress T cell proliferation in vitro and their absence in vivo accelerated bowel disease. Treatment with nTreg cells resolved the colitis, but only when iTreg cells were also present. Although iTreg cells required Foxp3 for suppressive activity and phenotypic stability, their gene expression profile was distinct from the established nTreg “genetic signature,” indicative of developmental and possibly mechanistic differences. These results identified a functional role for iTreg cells in vivo and demonstrated that both iTreg and nTreg cells can act in concert to maintain tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.