This paper presents a new constitutive model that simulates the mechanical behavior of methane hydrate‐bearing soil based on the concept of critical state soil mechanics, referred to as the “Methane Hydrate Critical State (MHCS) model”. Methane hydrate‐bearing soil is, under certain geological conditions, known to exhibit greater stiffness, strength and dilatancy, which are often observed in dense soils and also in bonded soils such as cemented soil and unsaturated soil. Those soils tend to show greater resistance to compressive deformation but the tendency disappears when the soil is excessively compressed or the bonds are destroyed due to shearing. The proposed model represents these features by introducing five extra model parameters to the conventional critical state model. It is found that, for an accurate prediction of ground settlement, volumetric yielding plays an important role when hydrate soil undergoes a significant change in effective stresses and hydrate saturation, which are expected during depressurization for methane gas recovery.
To extract gas from hydrate reservoirs, it has to be dissociated in situ. This endothermic dissociation process absorbs heat energy from the formation and pore fluid. The heat transfer governs the dissociation rate, which is proportional to the difference between the actual temperature and the equilibrium temperature. This study compares three potential gas production schemes from hydrate-bearing soil, where the radial heat transfer is governing. Cylindrical samples with 40% porefilling hydrate saturation were tested. The production tests were carried out over 90 min by dissociating the hydrate from a centered miniature wellbore, by either lowering the pressure to 6, 4, or 6 MPa with simultaneous heating of the wellbore to 288 K. All tests were replicated by a numerical simulation. With additional heating at the same wellbore pressure, the gas production from hydrates could, on average, be increased by 1.8 and 3.6 times in the simulation and experiments, respectively. If the heat influx from the outer boundary is limited, a simulation showed that the specific heat of the formation is rapidly used up when the wellbore is only depressurized and not heated.
Summary
This paper presents an explicit time-marching formulation for the solution of the coupled thermal flow mechanical behavior of gas-hydrate sediment. The formulation considers the soil skeleton as a deformable elastoplastic continuum, with an emphasis on the effect of hydrate (and its dissociation) on the stress-strain behavior of the soil. In the formulation, the hydrate is assumed to deform with the soil and may dissociate into gas and water. The formulation is explicitly coupled, such that the changes in temperature because of energy flow and hydrate dissociation affect the skeleton stresses and fluid (water and gas) pressures. This, in return, affects the mechanical behavior. A simulation of a vertical well within a layered soil is presented. It is shown that the heterogeneity of hydrate saturation causes different rates of dissociation in the layers. The difference alters the overall gas production and also the mechanical-deformation pattern, which leads to loading/unloading shearing along the interfaces between the layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.