Due to the particularity of the site selection of hydropower stations, the canyon wind with large fluctuations often occurs during the construction of the hydropower station, which will seriously affect the safety of construction personnel. Especially in the early stage of the construction of the hydropower station, the historical data and information on the canyon wind are scarce. Short-term forecasting of canyon wind speed has become extremely important. The main innovation of this paper is to propose a time series prediction method based on transfer learning. This method can achieve short-term prediction when there are few wind speed sample data, and the model is relatively simple while ensuring the accuracy of prediction. Considering the temporal and nonlinear characteristics of canyon wind speed data, a hybrid transfer learning model based on a convolutional neural network (CNN) and gated recurrent neural network (GRU) is proposed to predict short-term canyon wind speed with fewer observation data. In this method, the time sliding window is used to extract time series from historical wind speed data and temperature data of adjacent cities as the input of the neural network. Next, CNN is used to extract the feature vector from the input, and the feature vector can form time series. Then, the GRU network is used for short-term wind speed prediction by the time series. Experimental results show that the proposed method improves MAE and RMSE by nearly 20%, which will provide new ideas for the application of wind speed forecasting in canyons under complex terrain. The research contents of this paper contribute to the actual construction of hydropower stations.
Spatially explicit urban air quality information is important for urban fine-management and public life. However, existing air quality measurement methods still have some limitations on spatial coverage and system stability. A micro station is an emerging monitoring system with multiple sensors, which can be deployed to provide dense air quality monitoring data. Here, we proposed a method for urban air quality mapping at high-resolution for multiple pollutants. By using the dense air quality monitoring data from 448 micro stations in Lanzhou city, we developed a decision tree model to infer the distribution of citywide air quality at a 500 m × 500 m × 1 h resolution, with a coefficient of determination (R2) value of 0.740 for PM2.5, 0.754 for CO and 0.716 for SO2. Meanwhile, we also show that the deployment density of the monitoring stations can have a significant impact on the air quality inference results. Our method is able to show both short-term and long-term distribution of multiple important pollutants in the city, which demonstrates the potential and feasibility of dense monitoring data combined with advanced data science methods to support urban atmospheric environment fine-management, policy making, and public health studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.