Ribavirin (1-β-D-ribofuranosy-1,2,4-triazole-3-carboxamide) has been widely administered as an antiviral agent against RNA and DNA viruses. Ribavirin, in combination with interferon, has predominantly been applied in the treatment of the hepatitis C virus infection and its potential antitumor efficacy has recently become a point of interest. The aim of the present study was to evaluate the effect of ribavirin on the growth of malignant glioma cells, to identify novel predictive genes in malignant glioma cells (by analyzing gene expression profiles) and to assess the influence of ribavirin on the cell cycle of malignant glioma cells. The present study evaluated the antitumor efficacy of ribavirin against various malignant glioma cell lines (A-172, AM-38, T98G, U-87MG, U-138MG, U-251MG and YH-13). After culturing the cells in ribavirin-containing culture medium (final concentration, 0–1,000 μM) for 72 h, the viable proliferated cells were harvested and counted. The half maximal inhibitory concentration of ribavirin, with regard to the growth of the malignant glioma cell lines, was determined from the concentration of ribavirin required for 50% growth inhibition in comparison to the untreated control cells. Furthermore, the current study identified the genes in which the gene expression levels correlated with the ribavirin sensitivity of the malignant glioma cells lines, using a high-density oligonucleotide array. Finally, cell cycle analysis was performed on the U-87MG cell line. It was identified that ribavirin inhibited the growth of all of the malignant glioma cell lines in a dose-dependent manner, although the ribavirin sensitivity varied between each cell line. Of the extracted genes, PDGFRA demonstrated the strongest positive correlation between gene expression level and ribavirin sensitivity. Cell cycle analysis of the U-87MG cell line demonstrated that ribavirin treatment induces G0/G1 arrest and thus may be an effective agent for inhibiting malignant glioma cell growth. Therefore, the results of the current study indicate that ribavirin may have potential as a therapeutic agent in the treatment of malignant gliomas.
Glioblastoma has a poor prognosis even after multimodal treatment, such as surgery, chemotherapy and radiation therapy. Patients with glioblastoma frequently develop epileptic seizures during the clinical course of the disease and often require antiepileptic drugs. Therefore, agents with both antiepileptic and antitumoral effects may be very useful for glioblastoma treatment. Perampanel, an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist, is an antiepileptic drug that is widely used for intractable epilepsy. The present study aimed to assess the potential antitumoral effects of perampanel using malignant glioma cell lines. The cell proliferation inhibitory effect was evaluated using six malignant glioma cell lines (A-172, AM-38, T98G, U-138MG, U-251MG and YH-13). A dose-dependent inhibitory effect of perampanel on cell viability was demonstrated; however, the sensitivity of cells to perampanel varied and further antitumoral effects were demonstrated in combination with temozolomide (TMZ) in certain malignant glioma cells. Furthermore, cell cycle distribution and apoptosis induction analyses were performed in T98G and U-251MG cells using a fluorescence activated cell sorter (FACS) and the expression levels of apoptosis-related proteins were evaluated using western blotting. No significant change was demonstrated in the proportions of cells in the G0/G1, S and G2/M phases under 1.0 µM perampanel treatment, whereas induction of apoptosis was demonstrated using FACS at 10 µM perampanel and western blotting at 1.0 µM perampanel in both glioma cell lines. Overexpression of SERPINE1 may be related to poor prognosis in patients with gliomas. The combination of 1.0 µM perampanel and 5.0 µM tiplaxtinin, a SERPINE1 inhibitor, demonstrated further reduced cell viability in perampanel-resistant U-138MG cells, which have high expression levels of SERPINE1. These results indicated that the antitumor effect of perampanel may not be expected for malignant gliomas with higher expression levels of SERPINE1. The findings of the present study suggested that the antiepileptic drug perampanel may also have an antitumor effect through the induction of apoptosis, which is increased when combined with TMZ in certain malignant glioma cells. These findings also suggested that SERPINE1 expression may be involved in perampanel susceptibility. These results may lead to new therapeutic strategies for malignant glioma.
Glioma stem-like cells (GSCs) could have potential for tumorigenesis, treatment resistance, and tumor recurrence (GSC hypothesis). However, the mechanisms underlying such potential has remained elusive and few ultrastructural features of the cells have been reported in detail. We therefore undertook observations of the antigenic characteristics and ultrastructural features of GSCs isolated from human glioblastomas. Tumor spheres formed by variable numbers of cells, exhibiting a variable appearance in both their size and shape, were frequently seen in GSCs expressing the stem cell surface markers CD133 and CD15. Increased cell nucleus atypia, mitochondria, rough endoplasmic reticulum, coated vesicles, and microvilli, were noted in the GSCs. Furthermore, cells at division phases and different phases of the apoptotic process were occasionally observed. These findings could imply that GSCs have certain relations with human neural stem cells (NSCs) but are primitively different from undifferentiated NSCs. The data may provide support for the GSC hypothesis, and also facilitate the establishment of future glioblastoma treatments targeting GSCs.
Glioblastomas (GBM) often acquire resistance against temozolomide (TMZ) after continuous treatment and recur as TMZ-resistant GBM (TMZ-R-GBM). Lomustine (CCNU) and nimustine (ACNU), which were previously used as standard therapeutic agents against GBM before TMZ, have occasionally been used for the salvage therapy of TMZ-R-GBM; however, their efficacy has not yet been thoroughly examined. Therefore, we investigated the antitumor effects of CCNU and ACNU against TMZ-R-GBM. As a model of TMZ-R-GBM, TMZ resistant clones of human GBM cell lines (U87, U251MG, and U343MG) were established (TMZ-R-cells) by the culture of each GBM cells under continuous TMZ treatment, and the antitumor effects of TMZ, CCNU, or ACNU against these cells were analyzed in vitro and in vivo. As a result, although growth arrest and apoptosis were triggered in all TMZ-R-cells after the | 4737 YAMAMURO et Al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.