Ribavirin (1-β-D-ribofuranosy-1,2,4-triazole-3-carboxamide) has been widely administered as an antiviral agent against RNA and DNA viruses. Ribavirin, in combination with interferon, has predominantly been applied in the treatment of the hepatitis C virus infection and its potential antitumor efficacy has recently become a point of interest. The aim of the present study was to evaluate the effect of ribavirin on the growth of malignant glioma cells, to identify novel predictive genes in malignant glioma cells (by analyzing gene expression profiles) and to assess the influence of ribavirin on the cell cycle of malignant glioma cells. The present study evaluated the antitumor efficacy of ribavirin against various malignant glioma cell lines (A-172, AM-38, T98G, U-87MG, U-138MG, U-251MG and YH-13). After culturing the cells in ribavirin-containing culture medium (final concentration, 0–1,000 μM) for 72 h, the viable proliferated cells were harvested and counted. The half maximal inhibitory concentration of ribavirin, with regard to the growth of the malignant glioma cell lines, was determined from the concentration of ribavirin required for 50% growth inhibition in comparison to the untreated control cells. Furthermore, the current study identified the genes in which the gene expression levels correlated with the ribavirin sensitivity of the malignant glioma cells lines, using a high-density oligonucleotide array. Finally, cell cycle analysis was performed on the U-87MG cell line. It was identified that ribavirin inhibited the growth of all of the malignant glioma cell lines in a dose-dependent manner, although the ribavirin sensitivity varied between each cell line. Of the extracted genes, PDGFRA demonstrated the strongest positive correlation between gene expression level and ribavirin sensitivity. Cell cycle analysis of the U-87MG cell line demonstrated that ribavirin treatment induces G0/G1 arrest and thus may be an effective agent for inhibiting malignant glioma cell growth. Therefore, the results of the current study indicate that ribavirin may have potential as a therapeutic agent in the treatment of malignant gliomas.
Glioma stem-like cells (GSCs) could have potential for tumorigenesis, treatment resistance, and tumor recurrence (GSC hypothesis). However, the mechanisms underlying such potential has remained elusive and few ultrastructural features of the cells have been reported in detail. We therefore undertook observations of the antigenic characteristics and ultrastructural features of GSCs isolated from human glioblastomas. Tumor spheres formed by variable numbers of cells, exhibiting a variable appearance in both their size and shape, were frequently seen in GSCs expressing the stem cell surface markers CD133 and CD15. Increased cell nucleus atypia, mitochondria, rough endoplasmic reticulum, coated vesicles, and microvilli, were noted in the GSCs. Furthermore, cells at division phases and different phases of the apoptotic process were occasionally observed. These findings could imply that GSCs have certain relations with human neural stem cells (NSCs) but are primitively different from undifferentiated NSCs. The data may provide support for the GSC hypothesis, and also facilitate the establishment of future glioblastoma treatments targeting GSCs.
Ribavirin, a nucleic acid analog, has been employed as an antiviral agent against RNA and DNA viruses and has become the standard agent used for chronic hepatitis C in combination with interferon-α2a. Furthermore, the potential antitumor efficacy of ribavirin has attracted increasing interest. Recently, we demonstrated a dose-dependent antitumor effect of ribavirin for seven types of malignant glioma cell lines. However, the mechanism underlying the antitumor effect of ribavirin has not yet been fully elucidated. Therefore, the main aim of the present study was to provide further relevant data using two types of malignant glioma cell lines (U-87MG and U-138MG) with different expression of MGMT. Dotted accumulations of γH2AX were found in the nuclei and increased levels of ATM and phosphorylated ATM protein expression were also observed following ribavirin treatment (10 µM of ribavirin, clinical relevant concentration) in both the malignant glioma cells, indicating double-strand breaks as one possible mechanism underlying the antitumor effect of ribavirin. In addition, based on assessements using FACS, ribavirin treatment tended to increase the G0/G1 phase, with a time-lapse, indicating the induction of G0/G1-phase arrest. Furthermore, an increased phosphorylated p53 and p21 protein expression was confirmed in both glioma cells. Additionally, analysis by FACS indicated that apoptosis was induced following ribavirin treatment and caspase cascade, downstream of the p53 pathway, which indicated the activation of both exogenous and endogenous apoptosis in both malignant glioma cell lines. These findings may provide an experimental basis for the clinical treatment of glioblastomas with ribavirin.
The prognosis of gioblastoma, the standard chemotherapy agent for which is temozolomide (TMZ), remains poor despite recent advances in multimodal treatments. Therefore, it is necessary to identify and develop novel therapeutics for this malignant disease. Ribavirin, an anti-viral agent which is one of the standard agents for treatment of chronic hepatitis C in combination with interferon (IFN), was recently revealed to have an antitumor potential towards various tumor cells, including malignant glioma cells. The aim of the present study was to examine the antitumor effect of ribavirin in combination with TMZ and IFN-β on glioma cells and to evaluate the possibility that such combinations might represent a novel candidate for glioblastoma therapy. The combination of ribavirin with TMZ and IFN-β displayed a significant cell growth inhibitory effect with a ribavirin dose-dependency, including a relatively low concentration of ribavirin, on not only TMZ-sensitive but also TMZ-resistant malignant glioma cells. The antitumor efficacy of such a combination further indicated a synergistic interaction when assessed by the Chou-Talalay method. Furthermore, flow cytometry analysis suggested that apoptosis induction was one of the possible biological processes underlying the synergistic antitumor effect of these triple combination treatments. Therefore, such combinations may be potentially important in the clinical setting for glioblastoma treatment, although further detailed studies, e.g. on the adverse effects, are required.
Intractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy, which eliminates cancers effectively and safely, is the current clinical choice. Since aggressive tumors are substantially resistant to multidisciplinary therapies that target apoptosis, tumor-specific activation of another cell death modality is a promising avenue for meeting this goal. Here, we report that a cold atmospheric air plasma-activated medium (APAM) can kill OS and OC by causing a unique mitochondrial clustering. This event was named monopolar perinuclear mitochondrial clustering (MPMC) based on its characteristic unipolar mitochondrial perinuclear accumulation. The APAM caused apoptotic and nonapoptotic cell death. The APAM increased mitochondrial ROS (mROS) and cell death, and the antioxidants such as N-acetylcysteine (NAC) prevented them. MPMC occurred following mitochondrial fragmentation, which coincided with nuclear damages. MPMC was accompanied by mitochondrial lipid peroxide (mLPO) accumulation and prevented by NAC, Ferrostatin-1, and Nocodazole. In contrast, the APAM induced minimal cell death, mROS generation, mLPO accumulation, and MPMC in fibroblasts. These results suggest that MPMC occurs in a tumor-specific manner via mitochondrial oxidative stress and microtubule-driven mitochondrial motility. MPMC induction might serve as a promising target for exerting tumor-specific cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.