Titanium dioxide (TiO2) is a kind of wide-bandgap semiconductor. Nano-TiO2 devices exhibit size-dependent and novel photoelectric performance due to their quantum limiting effect, high absorption coefficient, high surface-volume ratio, adjustable band gap, etc. Due to their excellent electronic performance, abundant presence, and high cost performance, they are widely used in various application fields such as memory, sensors, and photodiodes. This article provides an overview of the most recent developments in the application of nanostructured TiO2-based optoelectronic devices. Various complex devices are considered, such as sensors, photodetectors, light-emitting diodes (LEDs), storage applications, and field-effect transistors (FETs). This review of recent discoveries in TiO2-based optoelectronic devices, along with summary reviews and predictions, has important implications for the development of transitional metal oxides in optoelectronic applications for researchers.
Diamond holds promise for optoelectronic devices working in high-frequency, high-power and high-temperature environments, for example in some aspect of nuclear energetics industry processing and aerospace due to its wide bandgap (5.5 eV), ultimate thermal conductivity, high-pressure resistance, high radio frequency and high chemical stability. In the last several years, p-type B-doped diamond (BDD) has been fabricated to heterojunctions with all kinds of non-metal oxide (AlN, GaN, Si and carbon-based semiconductors) to form heterojunctions, which may be widely utilized in various optoelectronic device technology. This article discusses the application of diamond-based heterostructures and mainly writes about optoelectronic device fabrication, optoelectronic performance research, LEDs, photodetectors, and high-electron mobility transistor (HEMT) device applications based on diamond non-metal oxide (AlN, GaN, Si and carbon-based semiconductor) heterojunction. The discussion in this paper will provide a new scheme for the improvement of high-temperature diamond-based optoelectronics.
The n-type Ce:ZnO (NL) grown using a hydrothermal method was deposited on a p-type boron-doped nanoleaf diamond (BDD) film to fabricate an n-Ce:ZnO NL/p-BDD heterojunction. It shows a significant enhancement in photoluminescence (PL) intensity and a more pronounced blue shift of the UV emission peak (from 385 nm to 365 nm) compared with the undoped heterojunction (n-ZnO/p-BDD). The prepared heterojunction devices demonstrate good thermal stability and excellent rectification characteristics at different temperatures. As the temperature increases, the turn-on voltage and ideal factor (n) of the device gradually decrease. The electronic transport behaviors depending on temperature of the heterojunction at different bias voltages are discussed using an equilibrium band diagram and semiconductor theoretical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.