Using molecular, cellular, and genetic approaches, recent studies examining the role of the bone morphogenetic protein (BMP) family of growth factors in the reproductive system have led to significant breakthroughs in our understanding of mammalian reproduction and fertility. Gene expression studies have revealed that key components of the BMP system (ligands, receptors, signaling molecules, and binding proteins) exhibit coordinated spatial and temporal expression patterns in fundamental cell types throughout the reproductive system. Availability of recombinant BMPs has enabled functional studies that have demonstrated important biological activities of BMPs in controlling cellular proliferation, differentiation, and apoptosis in reproductive tissues. The physiological importance of the BMP system for mammalian reproduction has been further highlighted by the elucidation of the aberrant reproductive phenotypes of animals with naturally occurring mutations or targeted deletions of certain BMP family genes. Collectively, these studies have established the concept that the BMP system plays a crucial role in fertility in female and male mammals. The purpose of this article is to review the evidence underpinning the importance of the BMP system in mammalian reproduction.
In early development of Xenopus laevis, it is known that activities of polypeptide growth factors are negatively regulated by their binding proteins. In this study, follistatin, originally known as an activin-binding protein, was shown to inhibit all aspects of bone morphogenetic protein (BMP) activity in early Xenopus embryos. Furthermore, using a surface plasmon resonance biosensor, we demonstrated that follistatin can directly interact with multiple BMPs at significantly high affinities. Interestingly, follistatin was found to be noncompetitive with the BMP receptor for ligand binding and to form a trimeric complex with BMP and its receptor. The results suggest that follistatin acts as an organizer factor in early amphibian embryogenesis by inhibiting BMP activities by a different mechanism from that used by chordin and noggin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.