Accurately decoding motor imagery (MI) braincomputer interface (BCI) tasks has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, less subject information and low signal-to-noise ratio of MI electroencephalography (EEG) signals make it difficult to decode the movement intentions of users. In this study, we proposed an end-to-end deep learning model, a multi-branch spectral-temporal convolutional neural network with channel attention and LightGBM model (MBSTCNN-ECA-LightGBM), to decode MI-EEG tasks. We first constructed a multi branch CNN module to learn spectral-temporal domain features. Subsequently, we added an efficient channel attention mechanism module to obtain more discriminative features. Finally, LightGBM was applied to decode the MI multi-classification tasks. The within-subject cross-session training strategy was used to validate classification results. The experimental results showed that the model achieved an average accuracy of 86% on the two-class MI-BCI data and an average accuracy of 74% on the four-class MI-BCI data, which outperformed current state-of-the-art methods. The proposed MBSTCNN-ECA-LightGBM can efficiently decode the spectral and temporal domain information of EEG, improving the performance of MI-based BCIs.
Autism spectrum disorder (ASD) is a pervasive developmental disorder with severe cognitive impairment in social communication and interaction. Previous studies have reported that abnormal functional connectivity patterns within the default mode network (DMN) were associated with social dysfunction in ASD. However, how the altered causal connectivity pattern within the DMN affects the social functioning in ASD remains largely unclear. Here, we introduced the Liang information flow method, widely applied to climate science and quantum mechanics, to uncover the brain causal network patterns in ASD. Compared with the healthy controls (HC), we observed that the interactions among the dorsal medial prefrontal cortex (dMPFC), ventral medial prefrontal cortex (vMPFC), hippocampal formation, and temporo‐parietal junction showed more inter‐regional causal connectivity differences in ASD. For the topological property analysis, we also found the clustering coefficient of DMN and the In‐Out degree of anterior medial prefrontal cortex were significantly decreased in ASD. Furthermore, we found that the causal connectivity from dMPFC to vMPFC was correlated with the clinical symptoms of ASD. These altered causal connectivity patterns indicated that the DMN inter‐regions information processing was perturbed in ASD. In particular, we found that the dMPFC acts as a causal source in the DMN in HC, whereas it plays a causal target in ASD. Overall, our findings indicated that the Liang information flow method could serve as an important way to explore the DMN causal connectivity patterns, and it also can provide novel insights into the nueromechanisms underlying DMN dysfunction in ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.