The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative “linker” between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.
Dynamics of the actin cytoskeleton are essential for pollen germination and pollen tube growth. ACTIN-DEPOLYMERIZING FACTORs (ADFs) typically contribute to actin turnover by severing/depolymerizing actin filaments. Recently, we demonstrated that Arabidopsis subclass III ADFs (ADF5 and ADF9) evolved F-actin-bundling function from conserved F-actin-depolymerizing function. However, little is known about the physiological function, the evolutional significance, and the actin-bundling mechanism of these neofunctionalized ADFs. Here, we report that loss of ADF5 function caused delayed pollen germination, retarded pollen tube growth, and increased sensitive to latrunculin B (LatB) treatment by affecting the generation and maintenance of actin bundles. Examination of actin filament dynamics in living cells revealed that the bundling frequency was significantly decreased in adf5 pollen tubes, consistent with its biochemical functions. Further biochemical and genetic complementation analyses demonstrated that both the N- and C-terminal actin-binding domains of ADF5 are required for its physiological and biochemical functions. Interestingly, while both are atypical actin-bundling ADFs, ADF5, but not ADF9, plays an important role in mature pollen physiological activities. Taken together, our results suggest that ADF5 has evolved the function of bundling actin filaments and plays an important role in the formation, organization, and maintenance of actin bundles during pollen germination and pollen tube growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.