The PASCAL VOC Challenge performance has been significantly boosted by the prevalently CNN-based pipelines like Faster R-CNN. However, directly applying the Faster R-CNN to the small remote sensing objects usually renders poor performance. To address this issue, this paper investigates on how to modify Faster R-CNN for the task of small object detection in optical remote sensing images. First of all, we not only modify the RPN stage of Faster R-CNN by setting appropriate anchors but also leverage a single high-level feature map of a fine resolution by designing a similar architecture adopting top-down and skip connections. In addition, we incorporate context information to further boost small remote sensing object detection performance while we apply a simple sampling strategy to solve the issue about the imbalanced numbers of images between different classes. At last, we introduce a simple yet effective data augmentation method named 'random rotation' during training. Experimental results show that our modified Faster R-CNN algorithm improves the mean average precision by a large margin on detecting small remote sensing objects.
P olarimetric target decomposition is a powerful technique to interpret scattering mechanisms in polarimetric synthetic aperture radar (PolSAR) data. Eigenvalueeigenvector-based and model-based methods are two main categories within the incoherent decomposition techniques. Eigenvalue-eigenvector-based decomposition becomes relatively mature since it has a clearer mathematical background and has only one decomposition solution. In contrast, model-based decompositions can obtain different decomposition solutions in terms of various scattering models. Meanwhile, conventional methods with models or assumptions that do not fit the observations may induce deficiencies. Thereby, the development of effective model-based decompositions has received considerable attention and many advances have been reported. This article aims to provide a review for these notable advances, mainly including the incorporation of orientation compensation processing, nonnegative eigenvalue constraint, generalized scattering models, complete information utilization, full-parameter inversion schemes, and fusion of polarimetry and interferometry. Airborne
The region-based convolutional networks have shown their remarkable ability for object detection in optical remote sensing images. However, the standard CNNs are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. To address this, we introduce a new module named deformable convolution that is integrated into the prevailing Faster R-CNN. By adding 2D offsets to the regular sampling grid in the standard convolution, it learns the augmenting spatial sampling locations in the modules from target tasks without additional supervision. In our work, a deformable Faster R-CNN is constructed by substituting the standard convolution layer with a deformable convolution layer in the last network stage. Besides, top-down and skip connections are adopted to produce a single high-level feature map of a fine resolution, on which the predictions are to be made. To make the model robust to occlusion, a simple yet effective data augmentation technique is proposed for training the convolutional neural network. Experimental results show that our deformable Faster R-CNN improves the mean average precision by a large margin on the SORSI and HRRS dataset.
Modern object detectors always include two major parts: a feature extractor and a feature classifier as same as traditional object detectors. The deeper and wider convolutional architectures are adopted as the feature extractor at present. However, many notable object detection systems such as Fast/Faster RCNN only consider simple fully connected layers as the feature classifier. In this paper, we declare that it is beneficial for the detection performance to elaboratively design deep convolutional networks (ConvNets) of various depths for feature classification, especially using the fully convolutional architectures. In addition, this paper also demonstrates how to employ the fully convolutional architectures in the Fast/Faster RCNN. Experimental results show that a classifier based on convolutional layer is more effective for object detection than that based on fully connected layer and that the better detection performance can be achieved by employing deeper ConvNets as the feature classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.