Disseminated superficial actinic porokeratosis (DSAP) is an uncommon autosomal dominant chronic keratinization disorder, characterized by multiple superficial keratotic lesions surrounded by a slightly raised keratotic border. Thus far, although two loci for DSAP have been identified, the genetic basis and pathogenesis of this disorder have not been elucidated yet. In this study, we performed a genome-wide linkage analysis in three Chinese affected families and localized the gene in an 8.0 cM interval defined by D12S330 and D12S354 on chromosome 12. Upon screening 30 candidate genes, we identified a missense mutation, p.Ser63Asn in SSH1 in one family, a frameshift mutation, p.Ser19CysfsX24 in an alternative variant (isoform f) of SSH1 in another family, and a frameshift mutation, p.Pro27ProfsX54 in the same alternative variant in one non-familial case with DSAP. SSH1 encodes a phosphatase that plays a pivotal role in actin dynamics. Our data suggested that cytoskeleton disorganization in epidermal cells is likely associated with the pathogenesis of DSAP.
Microphthalmia-associated transcription factor (MITF) plays a crucial role in the melanogenesis and proliferation of melanocytes that is dependent on its abundance and modification. Here, we report that epidermal growth factor (EGF) induces senescence and cyclin-dependent kinase inhibitor 1A (CDKN1A) expression that is related to MITF. We found that MITF could bind TP53 to regulate CDKN1A. Furthermore, the interaction between MITF and TP53 is dependent on AKT activity. We found that AKT phosphorylates MITF at S510. Phosphorylated MITF S510 enhances its affinity to TP53 and promotes CDKN1A expression. Meanwhile, the unphosphorylative MITF promotes TYR expression. The levels of p-MITF-S510 are low in 90% human melanoma samples. Thus the level of p-MITF-S510 could be a possible diagnostic marker for melanoma. Our findings reveal a mechanism for regulating MITF functions in response to EGF stimulation and suggest a possible implementation for preventing the over proliferation of melanoma cells.
It has been reported that zerumbone (ZER) has marked effects on the regulation of cell proliferation and migration in multiple types of cancer, and has anti-cancer effects on various types of malignant cell. However, the effects and underlying molecular mechanisms of treatment with ZER on melanoma cells remain unclear. In the present study, the effect of treatment with ZER on the proliferation, migration and mitochondrial function of the human melanoma cell line CHL-1 was investigated. The results of the present study indicated that treatment with ZER significantly inhibited CHL-1 cell proliferation (P<0.001). Cell migration analysis further demonstrated that ZER inhibited the migration of CHL-1 cells (P<0.001). Treatment with ZER significantly increased cellular reactive oxygen species levels (P<0.001), reduced matrix membrane potential (P<0.001), decreased ATP (P<0.001) and mitochondrial DNA (P<0.001) levels, and decreased mitochondrial transcription factor A mRNA levels (P=0.002). The results of the present study suggested that the inhibition of proliferation and migration was mediated by altered mitochondrial function. In conclusion, the results of the present study suggested that ZER has chemotherapeutic effects on human melanoma cells by altering mitochondrial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.