The frame structure combined with water-and heattransfer capabilities fully satisfies the requirements of photothermal conversion materials in seawater evaporation applications. Meanwhile, it must integrate the characteristics of a high photothermal conversion rate, thermal management, and water transportation. Herein, lamellar porous films were successfully designed and synthesized by a simple ultrasonic-assisted vacuum filtration method. In this process, polystyrene sulfonate@carbon nanotubes/reduced graphene oxide (PSS@CNT/rGO) lamellar films were constructed by the one-dimensional synthesis of PSS@CNT self-assembled at the molecular scale and the two-dimensional matrix material rGO. It is worth noting that the lamellar film exhibits a high specific surface area (285.5 m 2 •g −1 ), which is reflected in its abundant nanopores. Among them, the porous network system composed of nanochannels can provide efficient water supply and steam-transfer ability and strengthen the heat insulation performance of thermal localization, which is beneficial to photothermal evaporation. The obtained PSS@CNT/rGO lamellar films achieved a condensed water yield of 1.825 kg•m −2 •h −1 under 1 sun illumination (1 kW•m −2 ), and their solar-vapor conversion efficiency was 97.1%. Simultaneously, the interaction between the water flow and the carbon material interface was also used to generate additional electric energy output. The maximum open-circuit voltage of 0.46 V was generated at both termini of the PSS@ CNT/rGO lamellar film, which successfully realized the multieffect utilization of energy. These results show that the multistage assembly strategy is a facile and effective means for the development of an efficient evaporation photothermal film, which offers significant value in the field of photothermal seawater evaporation and power generation.
AIM: To report a case which keratitis is the first clinical manifestation of COVID-19 that occurred 3d earlier than the common COVID-19 symptoms.
METHODS: Regular slit lamp examination, corneal scraping test, and chest computed tomography (CT) were performed for patients with COVID-19 infection. The ophthalmologic treatment included ganciclovir eye drop (50 mg/mL, 6 times/d). The treatment for diarrhea included Guifu Lizhong pills (TID). The antiviral therapy consisted of oseltamivir (75 mg capsule Q12H); therapy preventing bacterial infection consisted of azithromycin (250 mg tablet QD) and moxifloxacin (0.4 g tablet Q12H); and therapy for cough relief and fever prevention consisted of Chinese herbal decoction.
RESULTS: A 35-year-old male suddenly suffered pain, photophobia, and tears in his right eye for one day without systemic COVID-19 symptoms. Patient was diagnosed with keratitis, which was seemingly different from common keratitis. Ganciclovir eye drop was initiated. The corneal scraping test for COVID-19 was positive. The chest CT images were abnormal confirming the diagnosis of COVID-19 infection. The antiviral and antibacterial therapies were initiated. Chinese herbal therapy was used for cough relief and fever prevention. After roughly two weeks, patient recovered from COVID-19.
CONCLUSION: A new type of keratitis, atypical keratitis, is a clinical manifestation of COVID-19, and this clinical manifestation could appear 3d earlier than fever and cough. The earlier a COVID-19 clinical manifestation is identified, the earlier can a patient be directed to stay at home, and significantly fewer people would be infected.
During the process of searching for tyrosinase inhibitors from natural medicines, one new monoterpene rhamnoside (1) and 13 known compounds (2–14) were isolated from the ethanolic extract of Betula platyphylla barks by repeated column chromatography. These structures were identified by comprehensive spectroscopic data analysis such as high-resolution electrospray ionization mass spectra (HR-ESI-MS), nuclear magnetic resonance (NMR), optical rotatory dispersion (ORD) and acid hydrolysis. In vitro assay revealed that compounds 6, 7 and 14 showed obvious inhibitory activity against tyrosinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.