Community platforms featuring user sharing and self-expression in social media generate big data on tourism resources, which, if fully utilized in a smart tourism system driven by high-tech and new technologies, will bring new life to the field of smart tourism research and will play an important role in the development of Internet+ tourism. However, tourism data in social media has the following characteristics: diversity, redundancy, heterogeneity, and intelligence. To address the characteristics of tourism data in social media, this thesis focuses on the following challenges: it is difficult to efficiently obtain tourism visualization information (text and images) in social media; it is difficult to effectively utilize tourism multimodal heterogeneous information; it is difficult to properly retrieve multimedia entity information of tourism attractions; and it is difficult to reasonably construct tourism personalized recommendation models. In this paper, an image search reordering method based on a hybrid feature graph model is proposed to realize the rapid acquisition of high-quality Internet images from the web using hybrid visual features and graph models, thus providing data security for the analysis of social media-based tourism images. To address the shortcomings of current search engines for image retrieval, visual information is used to bridge the problem of semantic gap between text-based search and images. To address the limitation of single visual features, we use latent semantic analysis to fuse multiple visual features to obtain hybrid features, which not only combine multiple single features but also preserve the potential relationship between these features. To address the shortcomings of the reordering methods based on classification and clustering, a reordering framework based on the graph model is used to reorder the images and finally complete the image search reordering based on the hybrid feature graph model. This method can obtain image information in social media with high efficiency and quality and then prepare for the subsequent work of tourism image analysis mining and personalized recommendation.
This paper analyzes the deficiencies of human resource allocation in the tourism industry by investigating the human resource allocation in the tourism industry, puts forward corresponding improvement measures and suggestions, and strives to provide certain guidance and helpful effects for the construction of tourism resource informatization. In this paper, a modified BP neural network model is proposed by introducing random perturbation terms on the hidden layer in the BP neural network algorithm, and the weight matrix connecting the input values is added with the random perturbation matrix to obtain a new weight matrix so that the convergence effect of the improved BP neural network algorithm is improved. Then, to address the problem that the initial weights of the long and short-term memory neural network and gated BP unit neural network have a large impact on the convergence speed and prediction accuracy of the algorithm after the initial weight selection is determined, this paper introduces the random perturbation term into the gate structure of the long and short-term memory neural network and gated BP unit neural network and proposes and connects an improved long and short-term memory neural network and gated BP unit neural network. The weight matrix of the input values is added with the random perturbation matrix to obtain the new weight matrix so that the convergence effect of the improved long and short-term memory neural network algorithm and the gated BP unit neural network algorithm is improved. Constructing the human resource allocation model of the tourism industry and proposing coping strategies and countermeasures and taking the human resource allocation system of the tourism industry as the core, the human resource allocation model of the tourism industry is established by combining the network image crisis life cycle system of tourism scenic spots and the network public opinion dissemination model. From the perspective of managers, the human resource allocation management policy and management procedures of the tourism industry are proposed. Using the quantifiable and disenable characteristics of online text information, the response strategy of online monitoring and propaganda and offline management and enhancement is proposed, and innovative countermeasures to the human resource allocation of the tourism industry are proposed in three categories: network originated, reality coexisting, and reality originated. Through this paper, we propose a new approach to human resource allocation management and development in the tourism industry and improve the efficiency of human resource allocation in the tourism industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.