Ultra-short, ultra-intense laser facilities could produce ultra-intense pulsed radiation fields. Currently, only passive detectors are fit for dose measurement in this circumstance. Since the laser device could generate a dose up to tens of mSv outside the chamber in tens of picoseconds, resulting in a high instantaneous dose rate of ~107 Sv s−1, it is necessary to perform real-time dose measurement to ensure the safety of nearby workers. Due to fast response and excellent radiation resistance, a diamond-based dose measurement device was designed and developed, and its dose-rate response and its feasibility for such occasions were characterized. The measurement results showed that the detector had a good dose-rate linearity in the range of 3.39 mGy h−1 to 10.58 Gy h−1 for an x-ray source with energy of 39 keV to 208 keV. No saturation phenomenon was observed, and the experimental results were consistent with the results obtained from Monte Carlo simulation. The charge collection efficiency was about 80%. Experimental measurements and simulations with this dose measurement device were carried out based on the “SG-II” laser device. The experimental and simulation results preliminarily verified the feasibility of using the diamond detector to measure the dose generated by ultra-short, ultra-intense laser devices. The results provided valuable information for the follow-up real-time dose measurement work of ultra-short, ultra-intense laser devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.