This paper studies the online adaptive optimal controller design for a class of nonlinear systems through a novel policy iteration (PI) algorithm. By using the technique of neural network linear differential inclusion (LDI) to linearize the nonlinear terms in each iteration, the optimal law for controller design can be solved through the relevant algebraic Riccati equation (ARE) without using the system internal parameters. Based on PI approach, the adaptive optimal control algorithm is developed with the online linearization and the two-step iteration, i.e., policy evaluation and policy improvement. The convergence of the proposed PI algorithm is also proved. Finally, two numerical examples are given to illustrate the effectiveness and applicability of the proposed method.
Available online xxxx
Keywords:Time-fractional fourth-order reaction-diffusion problem Finite element method Finite difference scheme Caputo-fractional derivative Unconditional stability Optimal a priori error analysis a b s t r a c tIn this article, a finite difference/finite element algorithm, which is based on a finite difference approximation in time direction and finite element method in spatial direction, is presented and discussed to cast about for the numerical solutions of a time-fractional fourth-order reaction-diffusion problem with a nonlinear reaction term. To avoid the use of higher-order elements, the original problem with spatial fourth-order derivative need to be changed into a second-order coupled system by introducing an intermediate variable σ = ∆u. Then the fully discrete finite element scheme is formulated by using a finite difference approximation for time fractional and integer derivatives and finite element method in spatial direction. The unconditionally stable result in the norm, which just depends on initial value and source item, is derived. Some a priori estimates of L 2 -norm with optimal order of convergence O(∆ 2−α t +h m+1 ), where ∆ t and h are time step length and space mesh parameter, respectively, are obtained. To confirm the theoretical analysis, some numerical results are provided by our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.