2020
DOI: 10.1109/tnnls.2019.2905715
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Optimal Control for a Class of Nonlinear Systems: The Online Policy Iteration Approach

Abstract: This paper studies the online adaptive optimal controller design for a class of nonlinear systems through a novel policy iteration (PI) algorithm. By using the technique of neural network linear differential inclusion (LDI) to linearize the nonlinear terms in each iteration, the optimal law for controller design can be solved through the relevant algebraic Riccati equation (ARE) without using the system internal parameters. Based on PI approach, the adaptive optimal control algorithm is developed with the onli… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
66
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
10

Relationship

2
8

Authors

Journals

citations
Cited by 144 publications
(67 citation statements)
references
References 39 publications
0
66
0
1
Order By: Relevance
“…By analogy, the control law of the entire closedloop system can be obtained, and the convergence of the closed-loop system is guaranteed by Lyapunov stability analysis method. Backstepping with intelligent algorithm can increase the quality of the transition process, reduce or even eliminate the uncertainty of the matching constraints, and provide a structured and systematic design method for the Lyapunov function design for complex nonlinear systems [20][21][22][23]. Sliding mode control (SMC) is another robust control method, which produces a switching control law (equivalent control law) to force the system to converge to the sliding surface within a boundary layer near the sliding surface under the convergence of the Lyapunov stability theory [24,25].…”
Section: Introductionmentioning
confidence: 99%
“…By analogy, the control law of the entire closedloop system can be obtained, and the convergence of the closed-loop system is guaranteed by Lyapunov stability analysis method. Backstepping with intelligent algorithm can increase the quality of the transition process, reduce or even eliminate the uncertainty of the matching constraints, and provide a structured and systematic design method for the Lyapunov function design for complex nonlinear systems [20][21][22][23]. Sliding mode control (SMC) is another robust control method, which produces a switching control law (equivalent control law) to force the system to converge to the sliding surface within a boundary layer near the sliding surface under the convergence of the Lyapunov stability theory [24,25].…”
Section: Introductionmentioning
confidence: 99%
“…The multi-machine power system is affected easily by external disturbance, which can influence the tracking performance. For the parameters uncertainty and disturbance problem, various solutions, such as robust control [31]- [33], online policy iteration [34], [35], adaptive control [36]- [39], parametric based dynamic compensator [40] and active disturbance rejection control [41]. In [31], a discrete-time sliding mode controller is designed for a class of conic-type systems, and the disturbance attenuation level achieved the prescribed performance.…”
Section: Introductionmentioning
confidence: 99%
“…Its application extends to many practical areas, such as sleep improvement, tone discrimination [28], and financial stability [21,23]. From the consideration of reducing control cost and control time, discontinuous controllers have been designed to stabilize a given system such as feedback control [29][30][31][32], pinning control [33], impulsive control [34], adaptive control [35][36][37][38][39][40], and intermittent control [41][42][43][44]. As for intermittent control, control time is divided into periodic and aperiodic type.…”
Section: Introductionmentioning
confidence: 99%