Autophagy is an endogenous protective process; the loss of autophagy could destabilize proteostasis and elevate intracellular oxidative stress, which is critically involved in the development of cardiac hypertrophy and heart failure. Oridonin, a natural tetracycline diterpenoid from the Chinese herb Rabdosia, has autophagy activation properties. In this study, we tested whether oridonin protects against cardiac hypertrophy in mice and cardiomyocytes. We implemented aortic banding to induce a cardiac hypertrophy mouse model, and oridonin was given by gavage for 4 weeks. Neonatal rat cardiomyocytes were stimulated with angiotensin II to simulate neurohumoural stress. Both in vivo and in vitro studies suggested that oridonin treatment mitigated pressure overload-induced cardiac hypertrophy and fibrosis, and also preserved heart function. Mice that received oridonin exhibited increased antioxidase activities and suppressed oxidative injury compared with the aortic banding group. Moreover, oridonin enhanced myocardial autophagy in pressure-overloaded hearts and angiotensin II-stimulated cardiomyocytes. Mechanistically, we discovered that oridonin administration regulated myocardial P21, and cytoplasmic P21 activated autophagy via regulating Akt and AMPK phosphorylation. These findings were further corroborated in a P21 knockout mouse model. Collectively, pressure overload-induced autophagy dysfunction causes intracellular protein accumulation, resulting in ROS injury while aggravating cardiac hypertrophy. Thus, our data show that oridonin promoted P21-related autophagic lysosomal degradation, hence attenuating oxidative injury and cardiac hypertrophy.
Necroptosis is a recently discovered form of programmed cell death (PCD) having necrotic-like morphology. However, its presence and potential impact with respect to head and neck squamous cell carcinoma (HNSCC) are still unknown. The aim of this study was to reveal the necroptosis status and its clinicopathological relevance in HNSCC and to establish an in vitro model. We first analyzed the level of p-MLKL, MLKL, and tumor necrosis in HNSCC patient tissues as well as their correlation with clinicopathological features. Results showed that approximately half of the tumor necrosis can be attributed to necroptosis, and the extent of necroptosis is an independent prognostic marker for patient's overall survival and progression-free survival. Then we established and thoroughly verified an in vitro model of necroptosis in two HNSCC cell lines using combined treatment of TNF-α, Smac mimetic and zVAD-fmk (TSZ). At last, we adopted this model and demonstrated that necroptosis can promote migration and invasion of HNSCC cells by releasing damage-associated molecular patterns. In conclusion, our study unveiled the necroptotic status in HNSCC for the first time and provided a novel in vitro model of necroptosis in two HNSCC cell lines. In addition, our results indicated that necroptosis may be a potential cancer promoter in HNSCC. This study may serve as the foundation for future researches of necroptosis in HNSCC.
Scope
Isoquercitrin (IQC) has been reported to play a protective role in many pathological conditions. Here, the effects of IQC on lipopolysaccharide (LPS)‐induced cardiac dysfunction are investigated, exploring its potential molecular mechanisms.
Methods and Results
C57BL/6 mice or H9c2 cardiomyoblasts are subjected to LPS challenge for 12 h. Pretreatment with IQC attenuates LPS‐induced cardiac dysfunction. IQC remarkably reduces LPS‐mediated inflammatory responses by inhibiting the mRNA levels of TNF‐α, IL6, and MCP1 as well as the protein levels of p‐IKKβ, p‐IκBα, and p‐p65 in vivo and in vitro. Interestingly, IQC administration also improves energy deficiencies caused by LPS, manifesting as significant increases in cardiac and cellular ATP levels. Furthermore, ATP levels increase due to the upregulation of PGC1β and PPAR‐α, which enhances fatty acid oxidation in vivo and in vitro. However, the protective roles of IQC against LPS‐mediated increased inflammatory responses and decreased acid fatty oxidation are partially blunted by inhibiting AMPKα in vitro, and suppressing AMPKα partially blocks the increased cardiac function elicited by IQC in LPS‐treated mice.
Conclusion
IQC attenuates LPS‐induced cardiac dysfunction by inhibiting inflammatory responses and by enhancing fatty acid oxidation, partially by activating AMPKα. IQC might be a potential drug for sepsis‐induced cardiac dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.