Background and purposeA carotid web is a thin, shelf-like luminal protrusion in the internal carotid artery that might cause carotid stenosis and stroke by inducing disturbed flow patterns, thrombosis, and abnormal biomechanical stimulus to the endothelial cells. This study simulated and evaluated how the two main treatments (endarterectomy and stenting) influence hemodynamic environments in the carotid artery and distal carotid siphon arteries, aiming to provide more references for the selection of clinical treatment.Materials and methodsThe carotid web, endarterectomy, and stenting models were reconstructed based on CT images. The blood flow simulations were conducted, and critical parameters related to thrombosis formation and artery remodeling, including swirling strength, wall shear stress (WSS), vortex Q-criterion, and oscillating shear index (OSI), were analyzed.ResultsIn the model of the carotid web, obvious recirculation formed distal to the web, accompanied by lower velocity, lower WSS, higher relative resident time (RRT), and higher Q value. While in both two treatment models, the velocity increased and the Q value and RRT decreased at the carotid bifurcation. In addition, both treatments provide more kinetic energy to the distal carotid siphon artery, especially the stenting model.ConclusionThe carotid web can significantly influence the flow environments in the carotid artery. Both endarterectomy and stenting treatments could significantly diminish the side effects of the web and are feasible choices for web patients in terms of hemodynamics. Besides, the treatments for the carotid web would also influence the flow patterns at the distal carotid siphon, especially for the stenting treatment. But more innovational designs are needed to make the minimally invasive stenting treatment more beneficial.
An abdominal aortic aneurysm (AAA) is a typical aortic disease with serious complications. In clinical practice, the decision to intervene in treatment depends on the rupture risk of AAA. Therefore, monitoring the progression of the disease and accurately assessing the rupture risk is of great importance for its treatment. Studies have shown that the biomechanical indicators based on multi-scale models are more effective in accurately assessing the rupture risk of AAA. However, using computational fluid dynamics (CFD) to simulate the biomechanical environment is a cumbersome and time-consuming process, which is inadequate to meet the needs of clinical monitoring and quick decisions. While the hemodynamic environment of AAA is heavily dependent on geometry, more and more biomechanics-related morphological parameters have been raised and validated. In this review, we summarized typical morphological parameters associated with AAA rupture and their relationships with the mechanical environment, including maximum diameter, deformation rate, saccular index, asymmetry, AAA volume, tortuosity, and intraluminal thrombus (ILT), providing a reference for clinical preoperative risk assessment. Clinical Impact Studies have shown that the biomechanical indicators based on multi-scale models are more effective in accurately assessing the rupture risk of AAA. To meet the need for clinical monitoring and rapid decision making, the typical morphological parameters associated with AAA rupture and their relationships with the mechanical environment have been summarized, which provide a reference for clinical preoperative risk assessment of AAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.