This study determined the impact of selected chemical protective coveralls (CPC) on physiological responses and comfort sensations. Fifteen males exercised at approximately 6 METS in three CPC (Tyvek®, Gulf and Tychem®) and a control garment. Physiological strain was characterised by core and skin temperatures, heart rate, V̇O2, perceived exertion, hotness and wetness. Physical burden was characterised by restriction to movement, V̇O2 and RPE. The highest levels of physiological strain and physical burden were found in Tychem®, and the lowest in control. Seven statistical regression models were developed through correlation and multiple regression analyses between the human responses and the results from previously conducted fabric and garment property testing. These models showed that physical burden was increased by adding weight and/or restricting movement. Oxygen consumption was best predicted by clothing weight and fabric bending hysteresis. Fabric evaporative resistance and thickness were the two best predictors of physiological and perceptual responses. Practitioner Summary: Traditional evaluation of chemical protective coveralls (CPC) involves testing at the fabric and garment levels and rarely is based on human trials. This study integrates information from fabric, garment and human trials to better understand physiological strain and physical comfort during prolonged exercise in CPC.
Chefs and other food preparation workers are at a high risk of scald injuries from hot liquids. Chefs’ clothing has the potential to act as a protective barrier between the skin and the thermal hazard. Although, impermeable barriers coupled with an insulating layer of fabric tend to offer the greatest protection against hot liquid penetration, the potential for heat strain and discomfort to workers may make them impractical in the kitchen environment. This study examined the effects of common finishing treatments used in chef jacket fabrics and the impact of layers on the protection offered against hot water burn injuries. The Teflon® treated fabrics offering combined stain and water repellency, provided the greatest protection with the lowest absorbed energy and longest times to second degree burn injury compared with the other finishes (i.e., regular, water repellent and soil release). Findings also showed that in most cases, increasing the number of layers improved protection provided by the fabric systems, with the Teflon® finished fabrics providing the highest protection against scald injuries as fabric layers increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.