Despite the recent impressive development of deep neural networks, using deep learning based methods to generate large‐scale Chinese fonts is still a rather challenging task due to the huge number of intricate Chinese glyphs, e.g., the official standard Chinese charset GB18030‐2000 consists of 27,533 Chinese characters. Until now, most existing models for this task adopt Convolutional Neural Networks (CNNs) to generate bitmap images of Chinese characters due to CNN based models' remarkable success in various applications. However, CNN based models focus more on image‐level features while usually ignore stroke order information when writing characters. Instead, we treat Chinese characters as sequences of points (i.e., writing trajectories) and propose to handle this task via an effective Recurrent Neural Network (RNN) model with monotonic attention mechanism, which can learn from as few as hundreds of training samples and then synthesize glyphs for remaining thousands of characters in the same style. Experimental results show that our proposed FontRNN can be used for synthesizing large‐scale Chinese fonts as well as generating realistic Chinese handwritings efficiently.
In this paper, we propose a novel Sequence-to-Sequence model based on metric-based meta learning for the arbitrary style transfer of online Chinese handwritings. Unlike most existing methods that treat Chinese handwritings as images and are unable to reflect the human writing process, the proposed model directly handles sequential online Chinese handwritings. Generally, our model consists of three sub-models: a content encoder, a style encoder and a decoder, which are all Recurrent Neural Networks. In order to adaptively obtain the style information, we introduce an attention-based adaptive style block which has been experimentally proven to bring considerable improvement to our model. In addition, to disentangle the latent style information from characters written by any writers effectively, we adopt metric-based meta learning and pre-train the style encoder using a carefully-designed discriminative loss function. Then, our entire model is trained in an end-to-end manner and the decoder adaptively receives the style information from the style encoder and the content information from the content encoder to synthesize the target output. Finally, by feeding the trained model with a content character and several characters written by a given user, our model can write that Chinese character in the user's handwriting style by drawing strokes one by one like humans. That is to say, as long as you write several Chinese character samples, our model can imitate your handwriting style when writing. In addition, after fine-tuning the model with a few samples, it can generate more realistic handwritings that are difficult to be distinguished from the real ones. Both qualitative and quantitative experiments demonstrate the effectiveness and superiority of our method.
CCS Concepts• Computing methodologies → Computer vision tasks; Computer graphics; Neural networks; Learning latent representations;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.