Effectors are essential virulence proteins produced by a broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes. Upon entry into host cells, pathogen effectors manipulate specific physiological processes or signaling pathways to subvert host immunity. Most effectors, especially those of eukaryotic pathogens, remain functionally uncharacterized. Here, we show that two effectors from the oomycete plant pathogen Phytophthora sojae suppress RNA silencing in plants by inhibiting the biogenesis of small RNAs. Ectopic expression of these Phytophthora suppressors of RNA silencing enhances plant susceptibility to both a virus and Phytophthora, showing that some eukaryotic pathogens have evolved virulence proteins that target host RNA silencing processes to promote infection. These findings identify RNA silencing suppression as a common strategy used by pathogens across kingdoms to cause disease and are consistent with RNA silencing having key roles in host defense.
Gram-negative bacterial pathogens deliver a variety of virulence proteins through the type III secretion system (T3SS) directly into the host cytoplasm. These type III secreted effectors (T3SEs) play an essential role in bacterial infection, mainly by targeting host immunity. However, the molecular basis of their functionalities remains largely enigmatic. Here, we show that the Pseudomonas syringae T3SE HopZ1a, a member of the widely distributed YopJ effector family, directly interacts with jasmonate ZIM-domain (JAZ) proteins through the conserved Jas domain in plant hosts. JAZs are transcription repressors of jasmonate (JA)-responsive genes and major components of the jasmonate receptor complex. Upon interaction, JAZs can be acetylated by HopZ1a through a putative acetyltransferase activity. Importantly, P. syringae producing the wild-type, but not a catalytic mutant of HopZ1a, promotes the degradation of HopZ1-interacting JAZs and activates JA signaling during bacterial infection. Furthermore, HopZ1a could partially rescue the virulence defect of a P. syringae mutant that lacks the production of coronatine, a JA-mimicking phytotoxin produced by a few P. syringae strains. These results highlight a novel example by which a bacterial effector directly manipulates the core regulators of phytohormone signaling to facilitate infection. The targeting of JAZ repressors by both coronatine toxin and HopZ1 effector suggests that the JA receptor complex is potentially a major hub of host targets for bacterial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.