The E2f7 and E2f8 family members are thought to function as transcriptional repressors important for the control of cell proliferation. Here, we have analyzed the consequences of inactivating E2f7 and E2f8 in mice and show that their individual loss had no significant effect on development. Their combined ablation, however, resulted in massive apoptosis and dilation of blood vessels, culminating in lethality by embryonic day E11.5. A deficiency in E2f7 and E2f8 led to an increase in E2f1 and p53, as well as in many stress-related genes. Homo- and heterodimers of E2F7 and E2F8 were found on target promoters, including E2f1. Importantly, loss of either E2f1 or p53 suppressed the massive apoptosis in double-mutant embryos. These results identify E2F7 and E2F8 as a unique repressive arm of the E2F transcriptional network that is critical for embryonic development and control of the E2F1-p53 apoptotic axis.
Polyploidization is observed in all mammalian species and is a characteristic feature of hepatocytes, but its molecular mechanism and biological significance are unknown. Hepatocyte polyploidization in rodents occurs through incomplete cytokinesis, starts after weaning and increases with age. Here, we show in mice that atypical E2F8 is induced after weaning and required for hepatocyte binucleation and polyploidization. A deficiency in E2f8 led to an increase in the expression level of E2F target genes promoting cytokinesis and thereby preventing polyploidization. In contrast, loss of E2f1 enhanced polyploidization and suppressed the polyploidization defect of hepatocytes deficient for atypical E2Fs. In addition, E2F8 and E2F1 were found on the same subset of target promoters. Contrary to the long-standing hypothesis that polyploidization indicates terminal differentiation and senescence, we show that prevention of polyploidization through inactivation of atypical E2Fs has, surprisingly, no impact on liver differentiation, zonation, metabolism and regeneration. Together, these results identify E2F8 as a repressor and E2F1 as an activator of a transcriptional network controlling polyploidization in mammalian cells.
In addition to its canonical role in nuclear transcription, signal transducer and activator of transcription 3 (STAT3) is emerging as an important regulator of mitochondrial function. Here, we demonstrate that a novel inhibitor that binds with high affinity to the STAT3 SH2 domain triggers a complex cascade of events initiated by interference with mitochondrial STAT3 (mSTAT3). The mSTAT3-drug interaction leads to mitochondrial dysfunction, accumulation of proteotoxic STAT3 aggregates, and cell death. The cytotoxic effects depend directly on the drug's ability to interfere with mSTAT3 and mitochondrial function, as demonstrated by site-directed mutagenesis and use of STAT3 knockout and mitochondria-depleted cells. Importantly, the lethal consequences of mSTAT3 inhibition are enhanced by glucose starvation and by increased reliance of cancer cells and tumor-initiating cells on mitochondria, resulting in potent activity in cell cultures and tumor xenografts in mice. These findings can be exploited for eliciting synthetic lethality in metabolically stressed cancer cells using highaffinity STAT3 inhibitors. Thus, this study provides insights on the role of mSTAT3 in cancer cells and a conceptual framework for developing more effective cancer therapies.S ignal transducer and activator of transcription 3 (STAT3) is a key element in multiple signaling pathways and is aberrantly activated in many human cancers (1, 2). STAT3 promotes cell proliferation, survival, angiogenesis, and immune-evasion (1-3). Phosphorylation at Tyr705 (pTyr705), catalyzed by Janus kinases (JAK) and other tyrosine kinases, induces STAT3 dimerization through the interaction of the SH2 domain (SH2D), nuclear accumulation, and target gene transcription (1, 3, 4). Emerging evidence indicates that STAT3 also localizes to mitochondria and controls mitochondrial functions (2, 5-7). Mitochondrial localized STAT3 (mSTAT3) is critical for survival of RAStransformed mouse embryo fibroblasts (MEF) under glucosestarvation, reflecting a specific dependency of cancer cells on mitochondria in certain conditions (6). Interestingly, mSTAT3 is prevalently phosphorylated at Ser727 (pSer727), which enhances its mitochondrial functions (5, 6). Furthermore, constitutive pSer727 is found in many human cancers and is apparently sufficient to drive tumorigenesis in various model systems (8-10).STAT3 is an attractive cancer therapeutic target because of its central role in multiple oncogenic processes and great effort has been devoted in recent years to discover STAT3 inhibitors (STAT3i) (11,12). To date, small-molecule STAT3i have shown relevant activity in preclinical models and few of them are currently investigated in clinical trials (11,(13)(14)(15)(16)(17). However, an important gap persists in our knowledge of the biological mechanisms of antitumor activity, the critical cellular processes affected, and the factors determining sensitivity of cancer cells to STAT3i, hindering further clinical development of these highly promising anticancer drugs. Indeed, great atten...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.