The E2f7 and E2f8 family members are thought to function as transcriptional repressors important for the control of cell proliferation. Here, we have analyzed the consequences of inactivating E2f7 and E2f8 in mice and show that their individual loss had no significant effect on development. Their combined ablation, however, resulted in massive apoptosis and dilation of blood vessels, culminating in lethality by embryonic day E11.5. A deficiency in E2f7 and E2f8 led to an increase in E2f1 and p53, as well as in many stress-related genes. Homo- and heterodimers of E2F7 and E2F8 were found on target promoters, including E2f1. Importantly, loss of either E2f1 or p53 suppressed the massive apoptosis in double-mutant embryos. These results identify E2F7 and E2F8 as a unique repressive arm of the E2F transcriptional network that is critical for embryonic development and control of the E2F1-p53 apoptotic axis.
The differences in glucose metabolism that distinguish most malignant and normal tissues have called attention to the importance of understanding the molecular mechanisms by which tumor energy metabolism is regulated. Receptor tyrosine kinase (RTK) pathways that are implicated in proliferation and transformation have been linked to several aspects of tumor glucose metabolism. However, the regulation of glycolysis has invariably been examined under conditions in which proliferation is concomitantly altered. To determine whether RTKs directly regulate glycolysis without prerequisite growth modulation, we first identified a specific RTK signaling pathway, platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) that regulates glycolysis in glioma-derived tumor stem-like cells from a novel mouse model. We determined that PDGFregulated glycolysis occurs independent of PDGF-regulated proliferation but requires the activation of AKT, a known metabolic regulator in tumor. Our findings identifying a key characteristic of brain tumors, aerobic glycolysis, mediated by a pathway with multiple therapeutic targets suggests the possibility of inhibiting tumor energy metabolism while also treating with agents that target other pathways of pathologic significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.