BackgroundStarch from maize kernels has diverse applications in human and animal diets and in industry and manufacturing. To meet the demands of these applications, starch quantity and quality need improvement, which requires a clear understanding of the functional mechanisms involved in starch biosynthesis and accumulation. In this study, a recombinant inbred line (RIL) population was developed from a cross between inbred lines CI7 and K22. The RIL population, along with both parents, was grown in three environments, and then genotyped using the MaizeSNP50 BeadChip and phenotyped to dissect the genetic architecture of starch content in maize kernels.ResultsBased on the genetic linkage map constructed using 2,386 bins as markers, six quantitative trait loci (QTLs) for starch content in maize kernels were detected in the CI7/K22 RIL population. Each QTL accounted for 4.7 % (qSTA9-1) to 10.6 % (qSTA4-1) of the starch variation. The QTL interval was further reduced using the bin-map method, with the physical distance of a single bin at the QTL peak ranging from 81.7 kb to 2.2 Mb. Based on the functional annotations and prior knowledge of the genes in the top bin, seven genes were considered as potential candidate genes for the identified QTLs. Three of the genes encode enzymes in non-starch metabolism but may indirectly affect starch biosynthesis, and four genes may act as regulators of starch biosynthesis.ConclusionsA few large-effect QTLs, together with a certain number of minor-effect QTLs, mainly contribute to the genetic architecture of kernel starch content in our maize biparental linkage population. All of the identified QTLs, especially the large-effect QTL, qSTA4-1, with a small QTL interval, will be useful for improving the maize kernel starch content through molecular breeding.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0675-2) contains supplementary material, which is available to authorized users.
Summary
Starch is the most abundant storage carbohydrate in maize kernels and provides calories for humans and other animals as well as raw materials for various industrial applications. Decoding the genetic basis of natural variation in kernel starch content is needed to manipulate starch quantity and quality via molecular breeding to meet future needs. Here, we identified 50 unique single quantitative trait loci (QTLs) for starch content with 18 novel QTLs via single linkage mapping, joint linkage mapping and a genome‐wide association study in a multi‐parent population containing six recombinant inbred line populations. Only five QTLs explained over 10% of phenotypic variation in single populations. In addition to a few large‐effect and many small‐effect additive QTLs, limited pairs of epistatic QTLs also contributed to the genetic basis of the variation in kernel starch content. A regional association study identified five non‐starch‐pathway genes that were the causal candidate genes underlying the identified QTLs for starch content. The pathway‐driven analysis identified ZmTPS9, which encodes a trehalose‐6‐phosphate synthase in the trehalose pathway, as the causal gene for the QTL qSTA4−2, which was detected by all three statistical analyses. Knockout of ZmTPS9 increased kernel starch content and, in turn, kernel weight in maize, suggesting potential applications for ZmTPS9 in maize starch and yield improvement. These findings extend our knowledge about the genetic basis of starch content in maize kernels and provide valuable information for maize genetic improvement of starch quantity and quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.