Enrofloxacin (ENR) is a widely used fluoroquinolone (FQ) antibiotic for antibacterial treatment of edible animal. In this study, a rapid and highly specific fluorescence polarization immunoassay (FPIA) was developed for monitoring ENR residues in animal foods. First, ENR was covalently coupled to bovine serum albumin (BSA) to produce specific polyclonal antibodies (pAbs). Three fluorescein-labeled ENR tracers (A, B, and C) with different spacers were synthesized and compared to obtain higher sensitivity. Tracer C with the longest arm showed the best sensitivity among the three tracers. The developed FPIA method showed an IC50 (50% inhibitory concentration) of 21.49 ng·mL−1 with a dynamic working range (IC20–IC80) of 4.30–107.46 ng·mL−1 and a limit of detection (LOD, IC10) of 1.68 ng·mL−1. The cross-reactivity (CR) of several structurally related compounds was less than 2%. The recoveries of spiked pork liver and chicken samples varied from 91.3% to 112.9%, and the average coefficients of variation were less than 3.83% and 5.13%, respectively. The immunoassay took only 8 min excluding sample pretreatment. This indicated that the established method had high sensitivity, specificity, and the advantages of simplicity. Therefore, the proposed FPIA provided a useful screening method for the rapid detection of ENR residues in pork liver and chicken.
This proposed heterologous strategy for enhanced FPIA is sensitive and rapid enough for the high-throughput detection of clinafloxacin residue in goat milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.