This article proposes a novel distributionally robust optimization (DRO)‐based soft‐constrained model predictive control (MPC) framework to explicitly hedge against unknown external input terms in a linear state‐space system. Without a priori knowledge of the exact uncertainty distribution, this framework works with a lifted ambiguity set constructed using machine learning to incorporate the first‐order moment information. By adopting a linear performance measure and considering input and state constraints robustly with respect to a lifted support set, the DRO‐based MPC is reformulated as a robust optimization problem. The constraints are softened to ensure recursive feasibility. Theoretical results on optimality, feasibility, and stability are further discussed. Performance and computational efficiency of the proposed method are illustrated through motion control and building energy control systems, showing 18.3% less cost and 78.8% less constraint violations, respectively, while requiring one third of the CPU time compared to multi‐stage scenario based stochastic MPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.