Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners and flame-retardants in industry and reported to have male reproductive toxicology. However, it is still unknown whether TOCP affects the female reproductive system and its underlying mechanism. In the present study, we found that TOCP exposure significantly decreased ovarian coefficient, caused disintegration and depletion of the granulosa cells in the ovary tissue and significantly inhibited the level of serum estradiol (E2). TOCP markedly increased both LC3-II and the ratio of LC3-II/LC3-I as well as autophagy proteins ATG5 and Beclin1 in the ovary tissue, implying that TOCP could induce autophagy in the ovary tissue. To further investigate the potential mechanism, primary ovarian granulosa cells were isolated in vitro and treated with 0–0.5 mM TOCP for 48 h. We showed that TOCP decreased the number of viable mouse granulosa cells without affecting cell cycle and apoptosis of the cells. Intriguingly, TOCP treatment markedly increased both LC3-II and the ratio of LC3-II/LC3-I as well as ATG5 and Beclin1. Furthermore, transmission electron microscopy (TEM) showed that autophagic vesicles in the cytoplasm increased significantly in the TOCP-treated cells, indicating that TOCP could induce autophagy in the cells. Taken together, TOCP reduces the number of viable cells and induces autophagy in mouse ovarian granulosa cells without affecting cell cycle and apoptosis.
Tri‐ortho‐cresyl phosphate (TOCP), a widely used plasticizer in industry, can cause female reproductive damage. Tea polyphenols (TPs) have multiple health effects via inhibiting oxidative stress. However, the reproductive protection of TPs in TOCP‐induced female reproductive system damage is yet to be elucidated. In the study, TOCP inhibited cell viability and induced autophagy of mouse ovarian granulosa cells; while TPs could rescue the inhibition of viability and induction of autophagy. 3‐MA, an autophagy inhibitor, could also rescue the inhibition of cell viability. These results indicated that TPs played a protective role in TOCP‐induced autophagy. Furthermore, TPs could inhibit the induction of oxidative stress of the cells by TOCP, which implying that TPs might alleviate TOCP‐induced autophagy via inhibiting oxidative stress. Furthermore, TPs could rescue TOCP‐induced autophagy and oxidative stress in the mouse ovarian tissues. Taken together, these results indicated that TPs could protect TOCP‐induced ovarian damage via inhibiting oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.