Cardiovascular disease (CVD) is the most common type of disease and has a high fatality rate in humans. Early diagnosis is critical for the prognosis of CVD. Before using myocardial tissue strain, strain rate, and other indicators to evaluate and analyze cardiac function, accurate segmentation of the left ventricle (LV) endocardium is vital for ensuring the accuracy of subsequent diagnosis. For accurate segmentation of the LV endocardium, this paper proposes the extraction of the LV region features based on the YOLOv3 model to locate the positions of the apex and bottom of the LV, as well as that of the LV region; thereafter, the subimages of the LV can be obtained, and based on the Markov random field (MRF) model, preliminary identification and binarization of the myocardium of the LV subimages can be realized. Finally, under the constraints of the three aforementioned positions of the LV, precise segmentation and extraction of the LV endocardium can be achieved using nonlinear least-squares curve fitting and edge approximation. The experiments show that the proposed segmentation evaluation indices of the method, including computation speed (fps), Dice, mean absolute distance (MAD), and Hausdorff distance (HD), can reach 2.1–2.25 fps,
93.57
±
1.97
%
,
2.57
±
0.89
mm, and
6.68
±
1.78
mm, respectively. This indicates that the suggested method has better segmentation accuracy and robustness than existing techniques.
Breast ultrasound examination is a routine, fast, and safe method for clinical diagnosis of breast tumors. In this paper, a classification method based on multi-features and support vector machines was proposed for breast tumor diagnosis. Multi-features are composed of characteristic features and deep learning features of breast tumor images. Initially, an improved level set algorithm was used to segment the lesion in breast ultrasound images, which provided an accurate calculation of characteristic features, such as orientation, edge indistinctness, characteristics of posterior shadowing region, and shape complexity. Simultaneously, we used transfer learning to construct a pretrained model as a feature extractor to extract the deep learning features of breast ultrasound images. Finally, the multi-features were fused and fed to support vector machine for the further classification of breast ultrasound images. The proposed model, when tested on unknown samples, provided a classification accuracy of 92.5% for cancerous and noncancerous tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.