Combining the advantages of dual-ion batteries (DIBs) and sodium-ion batteries (SIBs), we herein develop a superior sodium-based dual-ion battery (Na-DIB) based on the PTCDA organic anode and ionic liquid (IL) electrolyte. The system shows the highest specific discharge capacity of 177 mAh g −1 at 0.5C and excellent capacity retention over 100% at 2C after 200 cycles. Notably, even at an ultrahigh rate of 20C, the battery still maintains a considerable capacity of 60 mAh g −1 with a coulombic efficiency (CE) close to 100 and 94% capacity retention after 1000 cycles. Moreover, the self-discharge of the system has been investigated and shown to have an extremely low value of 0.18% h −1 . Consequently, this work presents an excellent Na-DIB system, which could be a promising candidate for large-scale applications.
Solid-state low molecular temperature.
Synopsispolymerization of poly(ethy1ene terephthalate) (PET) is carried out by heating the weight prepolymer at temperatures below its melting point but above its glass transition Postcondensation occurs and the condensation byproducts can be removed by applying vacuum or inert gas. Polymers obtained usually have high molecular weight, low carboxyl and acetaldehyde content, and can be used for beverage bottle or industrial yarns. Polyesters for textile purposes are manufactured by a melt process. Chemical reactions involved in the solid state polymerization are transesterification, esterification, as well as the diffusion of byproducts. Overall reaction rate was governed by the molecular weight, carboxyl content of prepolymer, crystallinity, particle size, reaction temperature, and time. Prepolymer for solid state polymerization should have intrinsic viscosity 0.4 dL/g or more, density 1.38 g/mL, and minimum dimension 3 mm or less. The reaction temperature could be 200-250OC. When textile grade PET is used as prepolymer, crystallization at 180-190°C for 1-2 b increases the density to 1.38 g/mL. Polymerization at 240-245°C for 3-5 h can raise the intrinsic viscosity to 0.72 dL/g and carboxyl content less than 20 meqkg. Appropriate reaction conditions are subject to the properties of prepolymers and the'design of reactors. Reactor used for solid state polymerization could be vacuum dryer type or stationary bed. The former is suitable for a small capacity and is run batchwise. The latter is a continuous process and is economically feasible for large-scale production.
SynopsisPrevious investigators have indicated that stabilizers will block the transesterification catalyst in the preparation of PET by the DMT process. This was not the case when triphenyl phosphate (TPP) or Irganox 1010 was used as the stabilizer and manganous acetate as the catalyst. Stabilizers in this study included TPP, trimethyl phosphate (TMP), tetraethylammonium hydroxide (TEAOH), Irganox 1010, and Irganox 1222. Their effect on the properties of PET made by the TPA process was investigated. It was observed that TPP and TMP greatly reduced the carboxyl content of PET and that the others had little or no effect. All stabilizers lowered the diethylene glycol content of PET. The rate of polycondensation was slightly increased when a small amount of Irganox 1010, Irganox 1222, or TMP was added. Proper concentration of stabilizer should be chosen to obtain good stability and low diethylene glycol content. Among the five stabilizers studied TPP was the best with respect to carboxyl and diethylene glycol content and thermal stability. The concentration of TPP should be kept under 0.04% by weight of PET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.