Purpose: This study aims to address the hypothesis that the high-mobility group A2 (HMGA2), an oncofetal protein, relates to survivability and serves as a prognostic biomarker for colorectal cancer (CRC).Experimental Design: This is a retroprospective multiple center study. The HMGA2 expression level was determined by performing immunohistochemistry on surgical tissue samples of 89 CRCs from a training set and 191 CRCs from a validation set. The Kaplan-Meier analysis and COX proportional hazard model were employed to analyze the survivability.Results: Multivariate logistic analysis indicated that the expression of HMGA2 significantly correlates with distant metastasis in training set (odds ratio, OR ¼ 3.53, 95% CI: 1.37-9.70) and validation set (OR ¼ 6.38, 95% CI: 1.47-43.95). Survival analysis revealed that the overexpression of HMGA2 is significantly associated with poor survival of CRC patients (P < 0.05). The adjusted HRs for overall survival were 2.38 (95% CI: 1.30-4.34) and 2.14 (95% CI: 1.21-3.79) in training and validation sets, respectively. Further investigation revealed that HMGA2 delays the clearance of g-H2AX in HCT-116 and SW480 cells post g-irradiation, which supports our finding that CRC patients with HMAG2-positive staining in primary tumors had augmented the efficacy of adjuvant radiotherapy (HR ¼ 0.18, 95% CI: 0.04-0.63).Conclusion: Overexpression of HMGA2 is associated with metastasis and unequivocally occurred in parallel with reduced survival rates of patients with CRC. Therefore, HMGA2 may potentially serve as a biomarker for predicting aggressive CRC with poor survivability and as an indicator for better response of radiotherapy.
Background: In addition to its essential role in ribonucleotide reduction, ribonucleotide reductase (RNR) small subunit, RRM2, has been known to play a critical role in determining tumor malignancy. Overexpression of RRM2 significantly enhances the invasive and metastatic potential of tumor. Angiogenesis is critical to tumor malignancy; it plays an essential role in tumor growth and metastasis. It is important to investigate whether the angiogenic potential of tumor is affected by RRM2.
Ribonucleotide reductase (RNR) is an attractive target for anticancer agents given its central function in DNA synthesis, growth, metastasis, and drug resistance of cancer cells. The current clinically established RNR inhibitors have the shortcomings of short halflife, drug resistance, and iron chelation. Here we report the development of a novel class of effective RNR inhibitors addressing these issues. A novel ligand-binding pocket on the RNR small subunit (RRM2) near the C-terminal tail was proposed by computer modeling and verified by site-directed mutagenesis and NMR techniques. A compound targeting this pocket was identified by virtual screening of the NCI diverse small molecule database. By lead optimization we developed the novel RNR inhibitor COH29 which acted as a potent inhibitor of both recombinant and cellular human RNR enzymes. COH29 overcame hydroxyurea and gemcitabine resistance in cancer cells. It effectively inhibited proliferation of most cell lines in the NCI 60 human cancer panel, most notably ovarian cancer and leukemia, but exerted little effect on normal fibroblasts or endothelial cells. In mouse xenograft models of human cancer, COH29 treatment reduced tumor growth compared to vehicle. Site-directed mutagenesis, NMR and surface plasmon resonance biosensor studies confirmed COH29 binding to the proposed ligand-binding pocket and offered evidence for assembly blockade of the RRM1-RRM2 quaternary structure. Our findings offer preclinical validation of COH29 as a promising new class of RNR inhibitors with a new mechanism of inhibition, with broad potential for improved treatment of human cancer.
The overexpression of RRM2 [RR (ribonucleotide reductase) small subunit M2] dramatically enhances the ability of the cancer cell to proliferate and to invade. To investigate further the relevance of RRM2 and CRCs (colorectal cancers), we correlated the expression of RRM2 with the clinical outcome of CRCs. A retrospective outcome study was conducted on CRCs collected from the COH [(City of Hope) National Medical Center, 217 cases] and ZJU (Zhejiang University, 220 cases). IHC (immunohistochemistry) was employed to determine the protein expression level of RRM2, and quantitative real-time PCR was employed to validate. Multivariate logistic analysis indicated that the adjusted ORs (odds ratios) of RRM2-high for distant metastases were 2.06 [95% CI (confidence interval), 1.01–4.30] and 5.89 (95% CI, 1.51–39.13) in the COH and ZJU sets respectively. The Kaplan–Meier analysis displayed that high expression of RRM2 had a negative impact on the OS (overall survival) and PFS (progress-free survival) of CRC in both sets significantly. The multivariate Cox analysis further demonstrated that HRs (hazard ratios) of RRM2-high for OS were 1.88 (95% CI, 1.03–3.36) and 2.06 (95% CI, 1.10–4.00) in the COH and ZJU sets respectively. Stratification analysis demonstrated that the HR of RRM2 dramatically increased to 12.22 (95% CI, 1.62–258.31) in the MMR (mismatch repair) gene-deficient subgroup in the COH set. Meanwhile, a real-time study demonstrated that down-regulation of RRM2 by siRNA (small interfering RNA) could significantly and specifically reduce the cell growth and adhesion ability in HT-29 and HCT-8 cells. Therefore RRM2 is an independent prognostic factor and predicts poor survival of CRCs. It is also a potential predictor for identifying good responders to chemotherapy for CRCs.
Ribonucleotide reductase small subunit B (RRM2B) is a stress response protein that protects normal human fibroblasts from oxidative stress. However, the underlying mechanism that governs this function is not entirely understood. To identify factors that interact with RRM2B and mediate anti-oxidation function, large-scale purification of human Flag-tagged RRM2B complexes was performed. Pyrroline-5-carboxylate reductase 1 and 2 (PYCR1, PYCR2) were identified by mass spectrometry analysis as components of RRM2B complexes. Silencing of both PYCR1 and PYCR2 by expressing short hairpin RNAs induced defects in cell proliferation, partial fragmentation of the mitochondrial network, and hypersensitivity to oxidative stress in hTERT-immortalized human foreskin fibroblasts (HFF-hTERT). Moderate overexpression of RRM2B, comparable to stress-induced level, protected cells from oxidative stress. Silencing of both PYCR1 and PYCR2 completely abolished anti-oxidation activity of RRM2B, demonstrating a functional collaboration of these metabolic enzymes in response to oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.