A number of organizations ranging from terrorist groups such as ISIS to politicians and nation states reportedly conduct explicit campaigns to influence opinion on social media, posing a risk to democratic processes. There is thus a growing need to identify and eliminate "influence bots" - realistic, automated identities that illicitly shape discussion on sites like Twitter and Facebook - before they get too influential. Spurred by such events, DARPA held a 4-week competition in February/March 2015 in which multiple teams supported by the DARPA Social Media in Strategic Communications program competed to identify a set of previously identified "influence bots" serving as ground truth on a specific topic within Twitter. Past work regarding influence bots often has difficulty supporting claims about accuracy, since there is limited ground truth (though some exceptions do exist [3,7]). However, with the exception of [3], no past work has looked specifically at identifying influence bots on a specific topic. This paper describes the DARPA Challenge and describes the methods used by the three top-ranked teams.Comment: IEEE Computer Magazine, in pres
MultiWOZ is a recently-released multidomain dialogue dataset spanning 7 distinct domains and containing over 10000 dialogues, one of the largest resources of its kind to-date. Though an immensely useful resource, while building different classes of dialogue state tracking models using MultiWOZ, we detected substantial errors in the state annotations and dialogue utterances which negatively impacted the performance of our models. In order to alleviate this problem, we use crowdsourced workers to fix the state annotations and utterances in the original version of the data. Our correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances throughout the dataset focusing in particular on addressing slot value errors represented within the conversations. We then benchmark a number of state-of-the-art dialogue state tracking models on this new Mul-tiWOZ 2.1 dataset and show joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective dialogue state tracking models to be built in the future.
Dialog state tracking is used to estimate the current belief state of a dialog given all the preceding conversation. Machine reading comprehension, on the other hand, focuses on building systems that read passages of text and answer questions that require some understanding of passages. We formulate dialog state tracking as a reading comprehension task to answer the question what is the state of the current dialog? after reading conversational context. In contrast to traditional state tracking methods where the dialog state is often predicted as a distribution over a closed set of all the possible slot values within an ontology, our method uses a simple attention-based neural network to point to the slot values within the conversation. Experiments on MultiWOZ-2.0 cross-domain dialog dataset show that our simple system can obtain similar accuracies compared to the previous more complex methods. By exploiting recent advances in contextual word embeddings, adding a model that explicitly tracks whether a slot value should be carried over to the next turn, and combining our method with a traditional joint state tracking method that relies on closed set vocabulary, we can obtain a joint-goal accuracy of 47.33% on the standard test split, exceeding current state-of-the-art by 11.75%**.
Purpose -The purpose of this paper is to conceptualize the use of Twitter hashtag as a strategy to enhance the visibility and symbolic power of social movement-related information. It examined how characteristics of hashtag drove information virality during a networked social movement. Design/methodology/approach -Twitter data from two days during the Occupy Wall Street Movement in 2011 were collected. With network analysis, the authors identified popular hashtag types and examined hashtag co-occurrence patterns during the two contrasting movement days. It also provides a comparative analysis of how major types of viral hashtag may play different roles depending on different movement cycles. Findings -The authors found that the role of hashtag influencing information virality may vary based on the context of the tweets. For example, movement participants applied more strategic hashtag combinations during the unexpected event day to reach different social circles. Consistent patterns were identified in mobilizing influential actors such as public figures. Different use patterns of media outlet hashtag were found across the two days. Originality/value -Implications on how hashtag type and event dynamics may shape hashtag co-occurrence patterns were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.