In order to improve the disambiguation accuracy of biomedical words, this paper proposes a disambiguation method based on the attention neural network. The biomedical word is viewed as the center. Morphology, part of speech, and semantic information from 4 adjacent lexical units are extracted as disambiguation features. The attention layer is used to generate a feature matrix. Average asymmetric convolutional neural networks (Av-ACNN) and bidirectional long short-term memory (Bi-LSTM) networks are utilized to extract features. The softmax function is applied to determine the semantic category of the biomedical word. At the same time, CNN, LSTM, and Bi-LSTM are applied to biomedical WSD. MSH corpus is adopted to optimize CNN, LSTM, Bi-LSTM, and the proposed method and testify their disambiguation performance. Experimental results show that the average disambiguation accuracy of the proposed method is improved compared with CNN, LSTM, and Bi-LSTM. The average disambiguation accuracy of the proposed method achieves 91.38%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.