In the field of metallurgical industry, identifying the granularity of raw materials is an essential process during transportation. We propose an image segmentation method by the GCN (global convolutional network)-Unet to extract the contour edge of raw materials granules. To obtain legible images of raw materials, a stationary industrial high speed camera is used to photograph the operating belt conveyor from above. Then, a well-trained GCN-Unet model is used to compute the images and output the results with the contour edge of granules and tiny parts of the materials segmented. We combined the U-Net with several global convolutional network models and boundary refinement blocks and compared the prediction results of the GCN-Unet and the U-Net, showing that the GCN-Unet has a better prediction ability with fewer parameters (7,876,675, while the U-Net has 31,101,448 parameters) and a higher calculating speed (about twice faster than the U-Net). Based on the CNN (convolutional neural network), our computer version method can almost replace traditional manual sampling inspection method for the corresponding overall analysis and the automatically identification process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.