The fact that a subset of human cancers showed evidence for a spontaneous adaptive immune response as reflected by the T cell‐inflamed tumor microenvironment phenotype led to the search for candidate innate immune pathways that might be driving such endogenous responses. Preclinical studies indicated a major role for the host STING pathway, a cytosolic DNA sensing pathway, as a proximal event required for optimal type I interferon production, dendritic cell activation, and priming of CD8+ T cells against tumor‐associated antigens. STING agonists are therefore being developed as a novel cancer therapeutic, and a greater understanding of STING pathway regulation is leading to a broadened list of candidate immune regulatory targets. Early phase clinical trials of intratumoral STING agonists are already showing promise, alone and in combination with checkpoint blockade. Further advancement will derive from a deeper understanding of STING pathway biology as well as mechanisms of response vs resistance in individual cancer patients.
PD-1/PD-L1 blockade can promote robust tumor regression yet secondary resistance often occurs as immune selective pressure drives outgrowth of resistant tumor clones. Here using a genome-wide CRISPR screen in B16.SIY melanoma cells, we confirm Ifngr2 and Jak1 as important genes conferring sensitivity to T cell-mediated killing in vitro. However, when implanted into mice, these Ifngr2and Jak1-deficient tumors paradoxically are better controlled immunologically. This phenotype maps to defective PD-L1 upregulation on mutant tumor cells, which improves anti-tumor efficacy of CD8 + T cells. To reconcile these observations with clinical reports of anti-PD-1 resistance linked to emergence of IFN-γ signaling mutants, we show that when mixed with wild-type tumor cells, IFN-γ-insensitive tumor cells indeed grow out, which depends upon PD-L1 expression by wild-type cells. Our results illustrate the complexity of functions for IFN-γ in anti-tumor immunity and demonstrate that intratumor heterogeneity and clonal cooperation can contribute to immunotherapy resistance.
Summary
B cells are unique antigen presenting cells because their antigen presentation machinery is closely tied to the B cell receptor. Autoreactive thymic B cells can efficiently present cognate self-antigens to mediate CD4+ T cell negative selection. However, the nature of thymocyte-thymic B cell interaction, and how this interaction affects the selection of thymic B cell repertoire and in turn the T cell repertoire are not well understood. Here we demonstrate that a large percentage of thymic B cells have undergone class switching intrathymically. Thymic B cell class switching requires cognate interaction with specific T cells. Class-switched thymic B cells have a distinct repertoire when compared to unswitched thymic B cells or splenic B cells. Particularly, autoreactive B cell specificities preferentially expand in the thymus by undergoing class switching, and these enriched, class-switched autoreactive thymic B cells play important role in CD4 T cell tolerance.
BackgroudFoliicolous algae are a common occurrence in tropical forests. They are referable to a few simple morphotypes (unicellular, sarcinoid-like or filamentous), which makes their morphology of limited usefulness for taxonomic studies and species diversity assessments. The relationship between algal community and their host phyllosphere was not clear. In order to obtain a more accurate assessment, we used single molecule real-time sequencing of the 18S rDNA gene to characterize the eukaryotic algal community in an area of South-western China.ResultWe annotated 2922 OTUs belonging to five classes, Ulvophyceae, Trebouxiophyceae, Chlorophyceae, Dinophyceae and Eustigmatophyceae. Novel clades formed by large numbers sequences of green algae were detected in the order Trentepohliales (Ulvophyceae) and the Watanabea clade (Trebouxiophyceae), suggesting that these foliicolous communities may be substantially more diverse than so far appreciated and require further research. Species in Trentepohliales, Watanabea clade and Apatococcus clade were detected as the core members in the phyllosphere community studied. Communities from different host trees and sampling sites were not significantly different in terms of OTUs composition. However, the communities of Musa and Ravenala differed from other host plants significantly at the genus level, since they were dominated by Trebouxiophycean epiphytes.ConclusionThe cryptic diversity of eukaryotic algae especially Chlorophytes in tropical phyllosphere is very high. The community structure at species-level has no significant relationship either with host phyllosphere or locations. The core algal community in tropical phyllopshere is consisted of members from Trentepohliales, Watanabea clade and Apatococcus clade. Our study provided a large amount of novel 18S rDNA sequences that will be useful to unravel the cryptic diversity of phyllosphere eukaryotic algae and for comparisons with similar future studies on this type of communities.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1588-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.