Background Ischemic stroke (IS) is a principal contributor to long-term disability in adults. A new cell death mediated by iron is ferroptosis, characterized by lethal aggregation of lipid peroxidation. However, a paucity of ferroptosis-related biomarkers early identify IS until now. This study investigated potential ferroptosis-related gene pair biomarkers in IS and explored their roles in immune infiltration. Results In total, we identified 6 differentially expressed ferroptosis-related genes (DEFRGs) in the metadata cohort. Of these genes, 4 DEFRGs were incorporated into the competitive endogenous RNA (ceRNA) network, including 78 lncRNA-miRNA and 16 miRNA-mRNA interactions. Based on relative expression values of DEFRGs, we constructed gene pairs. An integrated scheme consisting of machine learning algorithms, ceRNA network, and gene pair was proposed to screen the key DEFRG biomarkers. The receiver operating characteristic (ROC) curve witnessed that the diagnostic performance of DEFRG pair CDKN1A/JUN was superior to that of single gene. Moreover, the CIBERSORT algorithm exhibited immune infiltration landscapes: plasma cells, resting NK cells, and resting mast cells infiltrated less in IS samples than controls. Spearman correlation analysis confirmed a significant correlation between plasma cells and CDKN1A/JUN (CDKN1A: r = − 0.503, P < 0.001, JUN: r = − 0.330, P = 0.025). Conclusions Our findings suggested that CDKN1A/JUN could be a robust and promising gene-pair diagnostic biomarker for IS, regulating ferroptosis during IS progression via C9orf106/C9orf139-miR-22-3p-CDKN1A and GAS5-miR-139-5p/miR-429-JUN axes. Meanwhile, plasma cells might exert a vital interplay in IS immune microenvironment, providing an innovative insight for IS therapeutic target.
Objective. To investigate the expression status of Girdin in glioma and the relationship between Girdin expression and the biological behavior of glioma. Materials and methods. The expression status of Girdin in glioma from 560 cases was evaluated by RT-PCR, Western Blot and immunohistochemistry. The relationship between Girdin expression and clinic-pathological parameters as well as prognosis was also studied. Results. The expression of Girdin in high grade glioma was significantly higher than low grade glioma. After universal analysis, the expression of Girdin protein is closely related to KPS score, extent of resection, Ki67 and WHO grade, but it was not related to sex and age. Finally, extent of resection, Ki67 and WHO grade were indentified to be related to the Girdin protein expression in logistic regression. Interestingly, we found that the expression of Girdin is significantly related to the distant metastasis of glioma. After COX regression analysis, KPS score, Extent of resection, Ki67, WHO grade as well as Girdin were observed to be independent prognostic factors. Conclusions. Girdin is differential expressed in the glioma patients and closely related to the biological behavior of Glioma. Finally, Girdin was found to be a strong predictor for the post-operative prognosis.
Background Screening carotid B-mode ultrasonography is a frequently used method to detect subjects with carotid atherosclerosis (CAS). Due to the asymptomatic progression of most CAS patients, early identification is challenging for clinicians, and it may trigger ischemic stroke. Recently, machine learning has shown a strong ability to classify data and a potential for prediction in the medical field. The combined use of machine learning and the electronic health records of patients could provide clinicians with a more convenient and precise method to identify asymptomatic CAS. Methods Retrospective cohort study using routine clinical data of medical check-up subjects from April 19, 2010 to November 15, 2019. Six machine learning models (logistic regression [LR], random forest [RF], decision tree [DT], eXtreme Gradient Boosting [XGB], Gaussian Naïve Bayes [GNB], and K-Nearest Neighbour [KNN]) were used to predict asymptomatic CAS and compared their predictability in terms of the area under the receiver operating characteristic curve (AUCROC), accuracy (ACC), and F1 score (F1). Results Of the 18,441 subjects, 6553 were diagnosed with asymptomatic CAS. Compared to DT (AUCROC 0.628, ACC 65.4%, and F1 52.5%), the other five models improved prediction: KNN + 7.6% (0.704, 68.8%, and 50.9%, respectively), GNB + 12.5% (0.753, 67.0%, and 46.8%, respectively), XGB + 16.0% (0.788, 73.4%, and 55.7%, respectively), RF + 16.6% (0.794, 74.5%, and 56.8%, respectively) and LR + 18.1% (0.809, 74.7%, and 59.9%, respectively). The highest achieving model, LR predicted 1045/1966 cases (sensitivity 53.2%) and 3088/3566 non-cases (specificity 86.6%). A tenfold cross-validation scheme further verified the predictive ability of the LR. Conclusions Among machine learning models, LR showed optimal performance in predicting asymptomatic CAS. Our findings set the stage for an early automatic alarming system, allowing a more precise allocation of CAS prevention measures to individuals probably to benefit most.
Background. Oxidative stress (OS) and immune inflammation play complex intersections in the pathophysiology of ischemic stroke (IS). However, a competing endogenous RNA- (ceRNA-) based mechanism linked to the intersections in IS has not been explored. We aimed to identify potential OS-related signatures and analyze immune infiltration characteristics in IS. Methods. Three datasets (GSE22255, GSE110993, and GSE140275) from the GEO database were extracted. Differentially expressed long noncoding RNAs, microRNAs, and messenger RNAs (DElncRNAs, DEmiRNAs, and DEmRNAs) between IS patients and controls were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were explored. Moreover, a triple ceRNA network was constructed to reveal transcriptional regulation mechanisms. A comprehensive strategy among least absolute shrinkage and selection operator (LASSO) regression, DEmRNAs, uprelated DEmRNAs, and OS-related genes was adopted to select the best signature. Then, we evaluated and verified the discriminant ability of the signature via receiver operating characteristic (ROC) analysis. Immune infiltration characteristics were explored via the CIBERSORT algorithm. Moreover, the best signature was verified via qPCR and western blot methods in rat brain tissues and PC12 cells. Results. 11 DEmRNAs were identified totally. Enrichment analysis showed that the DEmRNAs were primarily concentrated in MAPK-associated biological processes and immune or inflammation-involved pathways. DUSP1 was identified as the best signature with an area under the ROC curve of 73.5% ( 95 % CI = 57.02 -89.98, sensitivity = 95 % , and specificity = 60 % ) in GSE22255 and 100.0% ( 95 % CI = 100.00 -100.00, sensitivity = 100 % , and specificity = 100 % ) in GSE140275. Importantly, we also identified the AC079305/DUSP1 axis in the ceRNA network. Immune infiltration showed that resting mast cells infiltrate less in IS patients compared with controls. And DUSP1 was negatively correlated with resting mast cells ( r = − 0.703 , P < 0.01 ), whereas it was positively correlated with neutrophils ( r = 0.339 , P < 0.05 ). Both in vivo and in vitro models confirmed the upregulated expression of DUSP1 and the downregulated expression of miR-429. Conclusion. This study identified the ceRNA-based AC079305/DUSP1 axis as a promising OS-related signature for IS. Immune infiltrating cells, especially mast cells, may exert a pivotal role in IS progression. Pharmacological agents targeting signatures, their receptors, or mast cells may shed a novel light on therapeutic targets for IS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.