Objectives Ageing is a universal and gradual process of organ deterioration. Radiation induces oxidative stress in cells, which leads to genetic damage and affects cell growth, differentiation and senescence. Astragaloside (AS)-IV has antioxidative, anti-apoptotic and anti-inflammatory properties. Methods To study the protective mechanism of AS-IV on radiation-induced brain cell senescence, we constructed a radiation-induced brain cell ageing model, using biochemical indicators, senescence-associated galactosidase (SA-β-gal) senescence staining, flow cytometry and Western blotting to analyse the AS-IV resistance mechanism to radiation-induced brain cell senescence. Key findings Radiation reduced superoxide dismutase (SOD) activity and expressions of cyclin-dependent kinase (CDK2), CDK4, cyclin E and transcription factor E2F1 proteins, and increased expressions of p21, p16, cyclin D and retinoblastoma (RB) proteins, malondialdehyde (MDA) activity, SA-β-gal–positive cells and cells stagnating in G1 phase. After treatment with AS-IV, the level of oxidative stress in cells significantly decreased and expression of proteins related to the cell cycle and ageing significantly changed. In addition, SA-β-gal–positive cells and cells arrested in G1 phase were significantly reduced. Conclusions These data suggest that AS-IV can antagonize radiation-induced brain cells senescence; and its mechanism may be related to p53-p21 and p16-RB signalling pathways of ageing regulation.
With multiple targets and low cytotoxicity, natural medicines can be used as potential neuroprotective agents. The increase in oxidative stress levels and inflammatory responses in the brain caused by radiation affects cognitive function and neuronal structure, and ultimately leads to abnormal changes in neurogenesis, differentiation, and apoptosis. Astragaloside Ⅳ (AS-Ⅳ), one of the main active constituents of astragalus, is known for its antioxidant, antihypertensive, antidiabetic, anti-infarction, anti-inflammatory, anti-apoptotic and wound healing, angiogenesis, and other protective effects. In this study, the mechanism of AS-IV against radiation-induced apoptosis of brain cells in vitro and in vivo was explored by radiation modeling, which provided a theoretical basis for the development of anti-radiation Chinese herbal active molecules and brain health products. In order to study the protective mechanism of AS-IV on radiation-induced brain cell apoptosis in mice, the paper constructed a radiation-induced brain cell apoptosis model, using TUNEL staining, flow cytometry, Western blotting to analyze AS-IV resistance mechanism to radiation-induced brain cell apoptosis. The results of TUNEL staining and flow cytometry showed that the apoptosis rate of radiation group was significantly increased. The results of Western blotting indicated that the expression levels of p-JNK, p-p38, p53, Caspase-9 and Caspase-3 protein, and the ratio of Bax to Bcl-2 in radiation group were significantly increased. There was no significant difference in the expression levels of JNK and p38. After AS-IV treatment, the apoptosis was reduced and the expression of apoptosis related proteins was changed. These data suggested that AS-IV can effectively reduce radiation-induced apoptosis of brain cells, and its mechanism may be related to the phosphorylation regulation of JNK-p38.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.