Although Toll-like receptors (TLRs) are critical mediators of the immune response to pathogens, the influence of polymorphisms in this gene family on human susceptibility to infection is poorly understood. We demonstrated recently that TLR5 recognizes flagellin, a potent inflammatory stimulus present in the flagellar structure of many bacteria. Here, we show that a common stop codon polymorphism in the ligand-binding domain of TLR5 (TLR5392STOP) is unable to mediate flagellin signaling, acts in a dominant fashion, and is associated with susceptibility to pneumonia caused by Legionella pneumophila, a flagellated bacterium. We also show that flagellin is a principal stimulant of proinflammatory cytokine production in lung epithelial cells. Together, these observations suggest that TLR5392STOP increases human susceptibility to infection through an unusual dominant mechanism that compromises TLR5's essential role as a regulator of the lung epithelial innate immune response.
The rough draft of the human genome map has been used to identify most of the functional genes in the human genome, as well as to identify nucleotide variations, known as "single-nucleotide polymorphisms" (SNPs), in these genes. By use of advanced biotechnologies, researchers are beginning to genotype thousands of SNPs from biological samples. Among the many possible applications, one of them is the study of SNP associations with complex human diseases, such as cancers or coronary heart diseases, by using a case-control study design. Through the gathering of environmental risk factors and other lifestyle factors, such a study can be effectively used to investigate interactions between genes and environmental factors in their associations with disease phenotype. Earlier, we developed a method to statistically construct individuals' haplotypes and to estimate the distribution of haplotypes of multiple SNPs in a defined population, by use of estimating-equation techniques. Extending this idea, we describe here an analytic method for assessing the association between the constructed haplotypes along with environmental factors and the disease phenotype. This method is also robust to the model assumptions and is scalable to a large number of SNPs. Asymptotic properties of estimations in the method are proved theoretically and are tested for finite sample sizes by use of simulations. To demonstrate the use of the method, we applied it to assess the possible association between apolipoprotein CIII (six coding SNPs) and restenosis by using a case-control data set. Our analysis revealed two haplotypes that may reduce the risk of restenosis.
The innate antiviral factor TRIM5␣ restricts the replication of some retroviruses through its interaction with the viral capsid protein, leading to abortive infection. While overexpression of human TRIM5␣ results in modest restriction of human immunodeficiency virus type 1 (HIV-1), this inhibition is insufficient to block productive infection of human cells. We hypothesized that polymorphisms within TRIM5 may result in increased restriction of HIV-1 infection. We sequenced the TRIM5 gene (excluding exon 5) and the 4.8-kb 5 putative regulatory region in genomic DNA from 110 HIV-1-infected subjects and 96 exposed seronegative persons, along with targeted gene sequencing in a further 30 HIV-1-infected individuals. Forty-eight single nucleotide polymorphisms (SNPs), including 20 with allele frequencies of >1.0%, were identified. Among these were two synonymous and eight nonsynonymous coding polymorphisms. We observed no association between TRIM5 polymorphism in HIV-1-infected subjects and their set-point viral load after acute infection, although one TRIM5 haplotype was weakly associated with more rapid CD4 ؉ T-cell loss. Importantly, a TRIM5 haplotype containing the nonsynonymous SNP R136Q showed increased frequency among HIV-1-infected subjects relative to exposed seronegative persons, with an odds ratio of 5.49 (95% confidence interval ؍ 1.83 to 16.45; P ؍ 0.002). Nonetheless, we observed no effect of individual TRIM5␣ nonsynonymous mutations on the in vitro HIV-1 susceptibility of CD4 ؉ T cells. Therefore, any effect of TRIM5␣ polymorphism on HIV-1 infection in primary lymphocytes may depend on combinations of SNPs or on DNA sequences in linkage disequilibrium with the TRIM5␣ coding sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.