ENCODE 3 (2012-2017) expanded production and added new types of assays 8 (Fig. 1, Extended Data Fig. 1), which revealed landscapes of RNA binding and the 3D organization of chromatin via methods such as chromatin interaction analysis by paired-end tagging (ChIA-PET) and Hi-C chromosome conformation capture. Phases 2 and 3 delivered 9,239 experiments (7,495 in human and 1,744 in mouse) in more than 500 cell types and tissues, including mapping of transcribed regions and transcript isoforms, regions of transcripts recognized by RNA-binding proteins, transcription factor binding regions, and regions that harbour specific histone modifications, open chromatin, and 3D chromatin interactions. The results of all of these experiments are available at the ENCODE portal (http://www.encodeproject.org). These efforts, combined with those of related projects and many other laboratories, have produced a greatly enhanced view of the human genome (Fig. 2), identifying 20,225 protein-coding and 37,595 noncoding genes
Deubiquitinating enzymes (DUBs) are important for the normal function of a number of cellular processes, including transcriptional regulation, cell cycle control, and DNA damage response. The enzymatic activity of DUB is regulated by different mechanisms. DUBs in several different families are post-translationally modified by phosphorylation. Large scale phosphoproteomic studies of human DUBs revealed that a majority of ubiquitin-specific proteases (USPs) are phosphorylated. USP1 is a prototypical DUB that requires a specific interaction with a WD40-repeat protein, UAF1, for its catalytic activity. In this study we show that Ser313 phosphorylation in USP1 is required for its interaction with UAF1 and for the stimulation of USP1’s activity. In contrast, two other known USP1 serine phosphorylations (Ser42 and Ser67) are dispensable with respect to the activity of the USP1/UAF1 complex. An S313D phosphomimetic mutation in USP1 can substitute for Ser313 phosphorylation in promoting the formation of the USP1/UAF1 complex. We further demonstrated that CDK1 is responsible for Ser313 phosphorylation, and protein phosphatase treatment of USP1 can lead to inactivation of USP1/UAF1. An inserted domain in USP1 (amino acids 235-408) was found to interact with UAF1, and this interaction is mediated by Ser313 phosphorylation. Our findings revealed an intriguing mechanism of regulating USP1 activity that combines phosphorylation of a key serine residue in USP1 and the specific interaction of USP1 with a WD40-repeat protein UAF1. The pSer313-dependent formation of USP1/UAF1 complex points to a new approach of inhibiting USP1 activity by disrupting the interaction between the UAF1’s WD40-repeat domain and the Ser313-containing phosphopeptide in USP1.
There is significant interest in the development of methods to validate novel biomarkers for Alzheimer’s disease (AD) diagnosis. Previously, a proteomic panel of cerebrospinal fluid (CSF) biomarker candidates that differentiated AD and non-AD CSF with accuracy higher than 90% was found; information about these CSF proteins can be used to develop multiple reaction monitoring (MRM) based analytical assays, which offer the possibility of quantifying protein expression level changes in samples, as well as, validation among multiple laboratories. Here we report an MRM assay that demonstrates good linearity (average R2 = 0.969) and reproducibility (average coefficient of variance of 6.93%) for the proposed AD CSF biomarkers. MRM quantification results of Aβ1-40, Aβ1-42, retinol-binding protein and cystatin C correlated well with those from ELISA (average R2 = 0.974). Analysis shows that 12 out of 16 selected targets exhibit the same trend in protein expression as that in literature.
BackgroundClostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation.ResultsThe identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5′UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5′UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress.ConclusionsThe integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0260-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.