Nanowire photodetectors are shown to function as phototransistors with high sensitivity. Due to small lateral dimensions, a nanowire detector can have low dark current while showing large phototransistive gain. Planar and vertical silicon nanowire photodetectors fabricated in a top-down approach using an etching process show a phototransistive gain above 35 000 at low light intensities. Simulations show that incident light can be waveguided into vertical nanowires resulting in up to 40 times greater external quantum efficiency above their physical fill factor. Vertical silicon nanowire phototransistors formed by etching are attractive for low light level detection and for integration with silicon electronics.
In this work, we studied the forward bias gate breakdown mechanism on Enhancement-mode p-GaN gate AlGaN/GaN HEMTs. To the best of our knowledge, it is the first time that the temperature dependency of the forward gate breakdown has been characterized. We report for the first time on the observation of a positive temperature dependency, i. e., a higher temperature leads to a higher gate breakdown voltage. Such unexpected behavior is explained by avalanche breakdown mechanism: at a high positive gate bias, electron/hole pairs are generated in the depletion region at the Schottky metal/p-GaN junction. Furthermore, at a high gate bias but before the catastrophic gate breakdown, a light emission was detected by a emission microscopy measurement (EMMI). This effect indicates an avalanche luminescence, which is mainly due to the recombination of the generated electron/hole pairs. Index Terms-p-GaN, AlGaN/GaN HEMTs, Forward bias gate breakdown, avalanche breakdown.
It is commonly accepted that interface states at the passivation surface of AlGaN/GaN heterostructures play an important role in the formation of the 2DEG density. Several interface state models are cited throughout literature, some with discrete levels, others with different kinds of distributions, or a combination of both. The purpose of this article is to compare the existing interface state models with both direct and indirect measurements of these interface states from literature (e.g., through the hysteresis of transfer characteristics of Metal-Insulator-Semiconductor High Electron Mobility Transistors (MISHEMTs) employing such an interface in the gate region) and Technology Computer Aided Design (TCAD) simulations of 2DEG densities as a function of the AlGaN thickness. The discrepancies between those measurements and TCAD simulations (also those commonly found in literature) are discussed. Then, an alternative model inspired by the Disorder Induced Gap State model for compound semiconductors is proposed. It is shown that defining a deep border trap inside the insulator can solve these discrepancies and that this alternative model can explain the origin of the two dimensional electron gas in combination with a high-quality interface that, by definition, has a low interface state density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.