A series of novel 4-Benzyl-1,3-thiazole derivatives was synthesized by applying analogue-based drug design approach and they were screened for anti-inflammatory activity. Darbufelone (CI 1004) a dual COX/LOX inhibitor, served as a lead molecule for designing a molecular scaffold. The derivatives with the 1,3 thiazole molecular scaffold bearing a side chain at position-2 resembling that of Romazarit (Ro-31-3948) were synthesized. The substitution at the second position of thiazole scaffold consisted of either carbalkoxy amino or aryl amino side chain. The introduction of an NH linker at the second position was the bioisoteric approach to impart the metabolic stability to the carbalkoxy side chains in designed molecules so as to avoid the likelihood of generating toxic moieties, like in Romazarit, which was withdrawn due to its toxicity profile. An important outcome of this study is the optimization of the substitution at the second position of the thiazole scaffold in eliciting better biological activity. The biological activity exhibited by the two designed series were in the order of carbalkoxy amino series . phenyl amino series. Molecule RS31 had emerged to be best compound in the whole series, having the side chain -NH-(CvO)O-R which resemble to Romazerit with 1,3 thiazole scaffold and substituted phenyl carbonyl group at fifth position derived from the retro-analysis of Darbufelone. This novel three-point pharmacophore, which is necessarily evolved from a lead-based drug design strategy, has opened up new avenues in designing of molecules acting on more than one rate-limiting step along the inflammatory cascade.
An objective of the present investigation was to prepare and evaluate Eudragit-coated pectin microspheres for colon targeting of 5-fluorouracil (FU). Pectin microspheres were prepared by emulsion dehydration method using different ratios of FU and pectin (1:3 to 1:6), stirring speeds (500-2000 rpm) and emulsifier concentrations (0.75%-1.5% wt/vol). The yield of preparation and the encapsulation efficiencies were high for all pectin microspheres. Microspheres prepared by using drug:polymer ratio 1:4, stirring speed 1000 rpm, and 1.25% wt/vol concentration of emulsifying agent were selected as an optimized formulation. Eudragit-coating of pectin microspheres was performed by oil-in-oil solvent evaporation method using coat:core ratio (5:1). Pectin microspheres and Eudragit-coated pectin microspheres were evaluated for surface morphology, particle size and size distribution, swellability, percentage drug entrapment, and in vitro drug release in simulated gastrointestinal fluids (SGF). The in vitro drug release study of optimized formulation was also performed in simulated colonic fluid in the presence of 2% rat cecal content. Organ distribution study in albino rats was performed to establish the targeting potential of optimized formulation in the colon. The release profile of FU from Eudragit-coated pectin microspheres was pH dependent. In acidic medium, the release rate was much slower; however, the drug was released quickly at pH 7.4. It is concluded from the present investigation that Eudragit-coated pectin microspheres are promising controlled release carriers for colon-targeted delivery of FU.
Cardiovascular diseases, cancer, arthritis, etc. are caused by free radicals that are byproducts of metabolic pathways. Selected plants namely Vitis vinifera, Phyllanthus emblica L., Punica granatum, Cinnamomum cassia, Ginkgo biloba L., and Camellia sinensis Linn. are reported to produce antioxidant property. This study is undertaken to support the hypothesis that formulation of a polyherbal combination of these plants shows a synergistic effect with green tea. The extracts of each drug were characterized by phytochemical studies and tests for phenolics and flavonoids. In vitro antioxidant activity for individual drug and its combination was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide, and nitric oxide free radical scavenging methods. Our results suggest that a combination of all these herbs with green tea can synergistically enhance antioxidant activity and thus lower doses of each herb with green tea may be used. Antioxidant potential of polyherbal combination was also comparable to that of standard ascorbic acid. Studies showed that selected individual plants contained abundant quantity of phenolics and flavonoids and their polyherbal combination with green tea was found to produce best antioxidant activity among all individual extracts. This will help in avoiding undesirable side effects due to higher doses of single herb.
In ethno medicinal practices, the traditional healers use the genus Curcuma for the treatment of various ailments but Curcuma caesia Roxb. is a very less known and almost untouched drug. The present work attempts to establish the necessary pharmocognostic standards for evaluating the plant material of C. caesia Roxb. Various parameters, such as morphology, microscopy, physicochemical constants, and phytochemical profiles of the entire parts of the plant were studied and the salient diagnostic features are documented. Major chemical constituents, extractive values, physicochemical constants, and other features are also been recorded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.