The unc-13 homolog B (UNC13B) gene encodes a presynaptic protein, mammalian uncoordinated 13–2 (Munc13-2), that is highly expressed in the brain—predominantly in the cerebral cortex—and plays an essential role in synaptic vesicle priming and fusion, potentially affecting neuronal excitability. However, the functional significance of UNC13B mutation in human disease is not known. In this study we screened for novel genetic variants in a cohort of 446 unrelated cases (families) with partial epilepsy without acquired causes by trio-based whole-exome sequencing. UNC13B variants were identified in 12 individuals affected by partial epilepsy and/or febrile seizures from eight unrelated families. The eight probands all had focal seizures and focal discharges in EEG recordings, including two patients who experienced frequent daily seizures and one who showed abnormalities in the hippocampus by brain MRI; however, all of the patients showed favorable outcome without intellectual or developmental abnormalities. The identified UNC13B variants included one nonsense variant, two variants at or around a splice site, one compound heterozygous missense variant, and four missense variants that cosegregated in the families. The frequency of UNC13B variants identified in the present study was significantly higher than that in a control cohort of Han Chinese and controls of the East Asian and all populations in the Genome Aggregation Database. Computational modeling, including hydrogen bond and docking analyses, suggested that the variants lead to functional impairment. In Drosophila, seizure rate and duration were increased by Unc13b knockdown compared to wild-type flies, but these effects were less pronounced than in sodium voltage-gated channel alpha subunit 1 (Scn1a) knockdown Drosophila. Electrophysiologic recordings showed that excitatory neurons in Unc13b-deficient flies exhibited increased excitability. These results suggest that UNC13B is potentially associated with epilepsy. The frequent daily seizures and hippocampal abnormalities but ultimately favorable outcome under antiepileptic therapy in our patients indicate that partial epilepsy caused by UNC13B variant is a clinically manageable condition.
Liu et al. MCD/FS & Molecular Sub-Regions of DEPDC5 whereas those associated with FEFS + /FS were a distance away from the binding sites. Evidence from four aspects and one possible evidence from sub-regional implication suggested MCD and FEFS + /FS as phenotypes of DEPDC5 variants. This study suggested that the phenotypes of DEPDC5 variants vary from mild FEFS + /FS to severe MCD. Heterozygous DEPDC5 mutations are generally less pathogenic and commonly associated with mild phenotypes. Bi-allelic mutations and second hit of somatic mutations, together with the genotype-phenotype correlation and sub-regional implication of DEPDC5 variants, explain severe phenotypes.
Objective: The objective of this study is to explore the role of GRIN2A gene in idiopathic generalized epilepsies and the potential underlying mechanism for phenotypic variation.Methods: Whole-exome sequencing was performed in a cohort of 88 patients with idiopathic generalized epilepsies. Electro-physiological alterations of the recombinant N-methyl-D-aspartate receptors (NMDARs) containing GluN2A mutants were examined using two-electrode voltage-clamp recordings. The alterations of protein expression were detected by immunofluorescence staining and biotinylation. Previous studies reported that epilepsy related GRIN2A missense mutations were reviewed. The correlation among phenotypes, functional alterations, and molecular locations was analyzed.Results: Three novel heterozygous missense GRIN2A mutations (c.1770A > C/p.K590N, c.2636A > G/p.K879R, and c.3199C > T/p.R1067W) were identified in three unrelated cases. Electrophysiological analysis demonstrated R1067W significantly increased the current density of GluN1/GluN2A NMDARs. Immunofluorescence staining indicated GluN2A mutants had abundant distribution in the membrane and cytoplasm. Western blotting showed the ratios of surface and total expression of the three GluN2A-mutants were significantly increased comparing to the wild type. Further analysis on the reported missense mutations demonstrated that mutations with severe gain-of-function were associated with epileptic encephalopathy, while mutations with mild gain of function were associated with mild phenotypes, suggesting a quantitative correlation between gain-of-function and phenotypic severity. The mutations located around transmembrane domains were more frequently associated with severe phenotypes and absence seizure-related mutations were mostly located in carboxyl-terminal domain, suggesting molecular sub-regional effects.Significance: This study revealed GRIN2A gene was potentially a candidate pathogenic gene of idiopathic generalized epilepsies. The functional quantitative correlation and the molecular sub-regional implication of mutations helped in explaining the relatively mild clinical phenotypes and incomplete penetrance associated with GRIN2A variants.
Aims To identify novel pathogenic gene of febrile seizures (FS)/epilepsy with antecedent FS (EFS+). Methods The trio‐based whole‐exome sequencing was performed in a cohort of 462 cases with FS/EFS+. Silico programs, sequence alignment, and protein modeling were used to predict the damaging of variants. Statistical testing was performed to analyze gene‐based burden of variants. Results Five heterozygous missense variants in CELSR3 were detected in five cases (families) with eight individuals (five females, three males) affected. Two variants were de novo, and three were identified in families with more than one individual affected. All the variants were predicted to be damaging in silico tools. Protein modeling showed that the variants resulted in disappearance of multiple hydrogen bonds and one disulfide bond, which potentially caused functional impairments of protein. The frequency of CELSR3 variants identified in this study was significantly higher than that in controls. All affected individuals were diagnosed with FS/EFS+, including six patients with FS and two patients with EFS+. All cases presented favorable outcomes without neurodevelopmental disorders. Conclusions CELSR3 variants are potentially associated with FS/EFS+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.