The venom proteome of Hydrophis curtus (synonym: Lapemis hardwickii) from Penang, Malaysia was investigated with nano-electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LCMS/MS) of the reverse-phase high-performance liquid chromatography (HPLC) venom fractions. Thirty distinct protein forms were identified as toxins from ten families. The three major protein families were phospholipase A2 (PLA2, 62.0% of total venom proteins), three-finger toxin (3FTX, 26.33%) and cysteine-rich secretory protein (CRiSP, 9.00%). PLA2 comprises diverse homologues (11 forms), predominantly the acidic subtypes (48.26%). 3FTX composed of one short alpha-neurotoxin (SNTX, 22.89%) and four long alpha-neurotoxins (LNTX, 3.44%). Both SNTX and LNTX were lethal in mice (intravenous LD50 = 0.10 and 0.24 μg/g, respectively) but the PLA2 were non-lethal (LD50 >1 μg/g). The more abundant and toxic SNTX appeared to be the main driver of venom lethality (holovenom LD50 = 0.20 μg/g). The heterologous Sea Snake Antivenom (SSAV, Australia) effectively cross-neutralized the venom (normalized potency = 9.35 mg venom neutralized per g antivenom) and the two neurotoxins in vivo, with the LNTX being neutralized more effectively (normalized potency = 3.5 mg toxin/g antivenom) than SNTX (normalized potency = 1.57 mg/g). SSAV immunorecognition was strong toward PLA2 but moderate-to-weak toward the alpha-neurotoxins, indicating that neutralization of the alpha-neurotoxins should be further improved.
BackgroundThe optimization of snakebite management and the use of antivenom depend greatly on the knowledge of the venom's composition as well as its pharmacokinetics. To date, however, pharmacokinetic reports on cobra venoms and their toxins are still relatively limited. In the present study, we investigated the pharmacokinetics of Naja sumatrana (Equatorial spitting cobra) venom and its major toxins (phospholipase A2, neurotoxin and cardiotoxin), following intravenous and intramuscular administration into rabbits.Principal findingsThe serum antigen concentration-time profile of the N. sumatrana venom and its major toxins injected intravenously fitted a two-compartment model of pharmacokinetics. The systemic clearance (91.3 ml/h), terminal phase half-life (13.6 h) and systemic bioavailability (41.9%) of N. sumatrana venom injected intramuscularly were similar to those of N. sputatrix venom determined in an earlier study. The venom neurotoxin and cardiotoxin reached their peak concentrations within 30 min following intramuscular injection, relatively faster than the phospholipase A2 and whole venom (Tmax = 2 h and 1 h, respectively). Rapid absorption of the neurotoxin and cardiotoxin from the injection site into systemic circulation indicates fast onsets of action of these principal toxins that are responsible for the early systemic manifestation of envenoming. The more prominent role of the neurotoxin in N. sumatrana systemic envenoming is further supported by its significantly higher intramuscular bioavailability (Fi.m. = 81.5%) compared to that of the phospholipase A2 (Fi.m. = 68.6%) or cardiotoxin (Fi.m. = 45.6%). The incomplete absorption of the phospholipase A2 and cardiotoxin may infer the toxins' affinities for tissues at the injection site and their pathological roles in local tissue damages through synergistic interactions.Conclusion/SignificanceOur results suggest that the venom neurotoxin is absorbed very rapidly and has the highest bioavailability following intramuscular injection, supporting its role as the principal toxin in systemic envenoming.
BackgroundThe sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used as a traditional medicine to relieve cough, asthma and chronic hepatitis. The traditional uses of the sclerotium are presumably related to its anti-inflammatory effect. The present study was carried out to evaluate the anti-inflammatory activity of the sclerotial powder of L. rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) cultivar TM02.MethodsThe anti-acute inflammatory activity of the sclerotial powder of L. rhinocerotis cultivar TM02 was investigated using carrageenan-induced paw edema test while the inhibition of transudative and proliferative phases of chronic inflammation were studied by cotton pellet induced granuloma model. Sprague Dawley rats were used in both studies. The anti-inflammatory activity was also measured by inhibition of lipopolysaccharide induced TNF-alpha production in RAW 264.7 macrophage cells.ResultsCold water extract (CWE), hot water extract (HWE) and methanol extract (ME) of the sclerotial powder of L. rhinocerotis cultivar TM02 possessed anti-acute inflammatory activity as was measured by carrageenan-induced paw edema test, with CWE being the most potent. The acute anti-inflammatory activity of the cold water extract (CWE) was mainly contributed by its high molecular weight (HMW) fraction isolated by Sephadex G50 gel filtration chromatography. Its protein component was very potent in the inhibition of TNF-alpha production with an IC50 of 0.76 μg/ml. CWE at 200 mg/kg did not inhibit transudative and proliferative phase of chronic inflammation as shown by using the cotton pellet induced granuloma model.ConclusionsOur results suggested that most of the bioactive substance(s) contributed to the acute-inflammatory activity of the sclerotial powder of L. rhinocerotis cultivar TM02 appear to be in the CWE, particularly its HMW fraction. The anti-inflammatory activity of CWE was mainly contributed by the protein component of the high molecular weight (HMW) fraction and it exhibited strong inhibitory effect on TNF-alpha production but the possibility of synergistic effect between HMW, MMW and LMW fractions cannot be excluded. Future studies will provide new insights into the anti-inflammatory activity of the sclerotial powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.