Ophiocordyceps sinensis is one of the best known fungi in Traditional Chinese Medicine. Many efforts have been devoted to locating the production areas of this species resulting in various reports; however, its geographic distribution remains incompletely understood. Distribution of O. sinensis at the county level is clarified in this work based on both a literature search and fieldwork. More than 3600 publications related to O. sinensis were investigated, including scientific papers, books, and online information. Herbarium specimens of O. sinensis and field collections made by this research group during the years 2000-2010 were examined to verify the distribution sites. A total of 203 localities for O. sinensis have been found, of which 106 are considered as confirmed distribution sites, 65 as possible distribution sites, 29 as excluded distribution sites and three as suspicious distribution sites. The results show that O. sinensis is confined to the Tibetan Plateau and its surrounding regions, including Tibet, Gansu, Qinghai, Sichuan, and Yunnan provinces in China and in certain areas of the southern flank of the Himalayas, in the countries of Bhutan, India and Nepal, with 3,000 m as the lowest altitude for the distribution. The fungus is distributed from the southernmost site in Yulong Naxi Autonomous County in northwestern Yunnan Province to the northernmost site in the Qilian Mountains in Qilian County, Qinghai Province, and from the east edge of the Tibetan Plateau in Wudu County, Gansu Province to the westernmost site in Uttarakhand, India. The clarification of the geographic distribution of O. sinensis will lay the foundation for conservation and sustainable use of the species.
Ultrasound-assisted extraction (UAE), using petroleum ether as the solvent, was systematically applied to extract main macamides and macaenes from Maca hypocotyls. Extraction yield was related with four variables, including ratio of solution to solid, extraction temperature, extraction time, and extraction power. On the basis of response surface methodology (RSM), the optimal conditions were determined to be the ratio of solution to solid as 10:1 (mL/g), the extraction temperature of 40 °C, the extraction time of 30 min, and the extraction power of 200 W. Based on the optimal extraction method of UAE, the total contents of ten main macamides and two main macaenes of Maca cultivated in twenty different areas of Tibet were analyzed by HPLC and UHPLC-ESI-Q-TOF-MS/MS. This study indicated that UAE was able to effectively extract macamides alkaloids from Maca hypocotyls. Quantitative analysis showed that geographical origins, not ecotypes, played a more important role on the accumulation of active macamides in Maca.
Ophiocordyceps sinensis is one of the most well-known traditional Chinese medicinal fungi. In this study, bacterial diversity in the soils of native habitats of O. sinensis was investigated using Illumina sequencing data. A total of 525,000 sequences of V6-16S rRNA were analyzed. The number of OTUs from each sample ranged from 13,858 to 15,978 at 97% sequence similarity cut-off. The results demonstrated that the deep sequencing approach provides improved access to rare genotypes. Richness indices and Shannon's diversity index did not differ significantly between samples collected from locations where O. sinensis was present (Os1-3) and not present (NOs1-3). Classified bacterial sequences were grouped into 23 phyla including Proteobacteria, Actinobacteria, Acidobacteria, Verrucomicrobia, etc. The Venn diagram revealed that 7183 OTUs belonging to 14 phyla were shared by Os, NOs and MP (mycelial pellicle wrapping the sclerotium of O. sinensis) samples, possibly representing a core microbiome existing in native habitats of O. sinensis, and that 863 belonging to 12 phyla were shared by Os and MP samples, possibly related to the occurrence of O. sinensis. Overall, the results revealed a high bacterial diversity in the soil samples and the relationships between the bacterial diversity and O. sinensis merit further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.