High mobility group box-1 (HMGB1) has been implicated as a pro-inflammatory cytokine in the pathogenesis of various inflammatory and autoimmune diseases. However, information about HMGB1 in inflammatory skin diseases is unknown. Herein, we investigated the serum HMGB1 levels and tissue HMGB1 expression in patients with psoriasis vulgaris (PV) and atopic dermatitis (AD). Serum levels of HMGB1 in patients with PV and AD were detected by enzyme-linked immunosorbent assay (ELISA). The expression of HMGB1 in lesional skin was evaluated by immunohistochemistry and immunofluorescence. Protein levels of HMGB1 in the nuclear fraction and cytoplasmic fraction were determined by western blot. Serum levels of HMGB1 in patients with PV but not AD were significantly higher than those in nornal controls. Moreover, serum HMGB1 levels were correlated with the severity of PV according to PASI socres. Furthermore, by immunohistochemistry and immunofluorescence, we showed that the expression of HMGB1 in normal skin was almost completely restricted to the nucleus. However, abundant cytoplasmic expression of HMGB1 was observed in the epidermis in lesional skin of PV patients. In addition, western blot data indicated that HMGB1 expression was in the nucleus protein and was absent in the cytoplasm protein in control group. In contrast, HMGB1 expression in the cytoplasmic fraction was detectable in AD patients and more distinct in PV patients. Taken together, this study provides first observations on the association of HMGB1 with PV, and showed the elevated HMGB1 serum levels and altered HMGB1 distribution in lesional skin in patients with PV. We suggest that HMGB1 might be involved in the pathogenesis of PV.
Pulsed electric field (PEF) treatment can be used for non-thermal inactivation of microorganisms. The aim of this paper is to investigate PEF treatment of yeast, Saccharomyces cerevisiae, using three different field waveforms: square; non-oscillating exponential and oscillating exponential. The PEF system used in this paper consists of a pulsed power supply and a parallel-plane metallic electrodes treatment cell located in an air-pressurised chamber. PEF treatment of the yeast was conducted using electric field impulses with magnitudes of 67 kV/cm and 80 kV/cm. The efficacy of the PEF treatment for inactivation of the yeast cells was assessed by comparison of the PEFtreated and untreated yeast populations. Results showed that 3-log 10 reduction in the yeast population can be achieved with 100 impulses using all tested waveforms. Amongst all three tested waveforms non-oscillating exponential impulses demonstrated improved PEF performance. The effect of duration of treatment and peak magnitude of the field on the PEF process is discussed.
Paeoniflorin (PF) extracted from the root of Paeonia lactiflora pall, displays anti-inflammation properties in several animal models. Adhesion molecules are important for the recruitment of leucocyte to the vessel wall and involved in the pathogenesis of various autoimmune and inflammatory diseases. Herein, we investigate the effects of PF on adhesion molecule expression in a mouse model of cutaneous Arthus reaction and cultured human dermal microvascular endothelial cells (HDMECs). We showed that PF significantly ameliorated the immune complex (IC) induced vascular damage, leucocyte infiltrates and adhesion molecules expression. Furthermore, PF markedly blocked tumor necrosis factor-α (TNF-α)-induced E-selectin and intercellular adhesion molecule-1 (ICAM-1) expression in HDMECs at both mRNA and protein levels. PF also suppressed TNF-α-induced adhesion of polymorphonuclear leucocytes (PMNs) to HDMECs. Finally, western blot data revealed that PF can inhibit the phosphorylation of p38, JNK in TNF-α-treated HDMECs. These data suggest that PF, as an anti-inflammatory agent, can downregulate adhesion molecules expression. PF may be a candidate medicine for the treatment of IC-induced inflammatory response.
Henoch-Schönlein purpura (HSP) is a commonest systemic vasculitis (SV) in childhood characterized by an inflammatory reaction directed at vessels. Endothelial damage and perivascular leukocyte infiltrates are vital in the development of HSP. Vascular endothelial (VE)-cadherin is an endothelial cell-specific adhesion molecule, which plays critical roles in angiogenesis and endothelial integrity. Herein, we investigated the serum levels of soluble VE-cadherin (sVE-cadherin) in patients with HSP and other forms of SV. The serum levels of sVE-cadherin in 30 patients with HSP, together with patients with urticarial vasculitis, allergic vasculitis, Behcet disease, psoriasis vulgaris (PV) and atopic dermatitis (AD) and 26 health controls were measured by enzyme-linked immunosorbent assay. Serum levels of sVE-cadherin were significantly increased in patients with HSP in acute stage and patients with other forms of SV but not in patients with PV or AD. Moreover, Serum sVE-cadherin levels in HSP patients were correlated with the severity of this disease and serum concentrations of IgA anticardiolipin antibodies and vascular endothelial growth factor. Taken together, we show firstly that serum sVE-cadherin is abnormally increased in HSP patients. Increased serum levels of sVE-cadherin might be a novel biomarker for evaluating the severity of HSP and useful for identifying the presence of SV in inflammatory skin conditions.
High-mobility group box-1 (HMGB1) has been implicated as a pro-inflammatory cytokine in the pathogenesis of various inflammatory and autoimmune diseases. However, information about HMGB1 in Henoch-Schönlein purpura (HSP) is still unclear. Herein, we investigated the role of HMGB1 in patients with HSP and the pro-inflammatory effects of HMGB1 on human dermal microvascular endothelial cell line (HMEC-1). Serum HMGB1 levels in patients with HSP together with patients with allergic vasculitis (AV) and urticarial vasculitis (UV) were detected by enzyme-linked immunosorbent assay (ELISA). HMEC-1 cells were treated with HMGB1 at concentrations ranging from 4 ng/ml to 100 ng/ml. Serum HMGB1 levels were significantly increased in patients with HSP, AV and UV, when compared with those in control group. Moreover, abundant cytoplasmic expression of HMGB1 was observed in endothelial cells in lesional skin of HSP patients. Using membrane cytokine antibody array, we indicate that HMGB1 markedly induced TNF-α and IL-6 release in cultured supernatant. Furthermore, by real-time quantitative PCR and ELISA, the effects of HMGB1 on these cytokines production in HMEC-1 cells were established. Finally, Western blot data revealed that HMGB1 can induce phosphorylation of inhibitor of κB-α (IκBα) and the nuclear translocation of nuclear factor-κB (NF-κB) p65 in HMEC-1 cells. In conclusion, this study provides first observations on the association of HMGB1 with HSP. We suggest that HMGB1 may be an important mediator of endothelial inflammation through the induction of TNF-α and IL-6 production and may play a crucial role in the pathogenesis of HSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.