Aiming at the development of a novel grinding technology for the highly efficient machining of difficult to machine materials such as Ti-6Al-4V, an ultrasonic assisted pulsed electrochemical grinding (UAECG) method was proposed. The current work is to reveal the fundamental grinding characteristics of the UAECG of Ti-6Al-4V by experimentally investigating the effect of vibration amplitude on grinding forces, actual material removal and work-surface roughness under different process parameters such as the input voltage and rotational speed. Summarizing the obtained results revealed that the grinding forces in UAECG are significantly smaller than those in conventional grinding (CG).
Inconel 718 has high yield strength, corrosion resistance, heat resistance and fatigue resistance, and possesses a lower thermal conductivity, leading to high grinding force and heavy wheel damage in grinding of this material. Against these problems, ultrasonic assisted grinding (UAG) can be the potential candidate for high efficiency processing of Inconel 718. The current work is, hence, to clarify the fundamental UAG characteristics of Inconel 718 by experimentally investigating the effect of vibration amplitude on grinding force, actual material removal and work-surface roughness under different process parameters such as the wheel rotational speed, wheel depth of cut and vibration amplitude. Summarizing the obtained results revealed that the grinding forces and the actual material removal in UAG are significantly smaller and larger, respectively, than those in conventional grinding. It is also found that ultrasonic vibration can improve the work-surface finish even at deep wheel depth of cut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.