We developed a new method of fabricating a divalent copper ion (Cu2+) modified DNA thin film on a glass substrate and studied its magnetic properties. We evaluated the coercive field (Hc), remanent magnetization (Mr), susceptibility (χ), and thermal variation of magnetization with varying Cu2+ concentrations [Cu2+] resulting in DNA thin films. Although thickness of the two dimensional DNA thin film with Cu2+ in dry state was extremely thin (0.6 nm), significant ferromagnetic signals were observed at room temperature. The DNA thin films with a [Cu2+] near 5 mM showed the distinct S-shape hysteresis with appreciable high Hc, Mr and χ at low field (≤600 Oe). These were primarily caused by the presence of small magnetic dipoles of Cu2+ coordination on the DNA molecule, through unpaired d electrons interacting with their nearest neighbors and the inter-exchange energy in the magnetic dipoles making other neighboring dipoles oriented in the same direction.
Abstract. The information capacity of DNA double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure.Online supplementary data available from stacks.iop.org/Nano/XX/XXXXXX/mmedia
Crystallization is an essential process for understanding a molecule's aggregation behavior. It provides basic information on crystals, including their nucleation and growth processes. Deoxyribonucleic acid (DNA) has become an interesting building material because of its remarkable properties for constructing various shapes of submicron-scale DNA crystals by self-assembly. The recently developed substrate-assisted growth (SAG) method produces fully covered DNA crystals on various substrates using electrostatic interactions and provides an opportunity to observe the overall crystallization process. In this study, we investigated quantitative analysis of molecular-level DNA crystallization using the SAG method. Coverage and crystal size distribution were studied by controlling the external parameters such as monomer concentration, annealing temperature, and annealing time. Rearrangement during crystallization was also discussed. We expect that our study will provide overall picture of the fabrication process of DNA crystals on the charged substrate and promote practical applications of DNA crystals in science and technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.